node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
KRC16836.1 | KRC27941.1 | ASE31_06895 | ASE31_14170 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | RNA polymerase subunit sigma; Bacteria have multiple sigma factors which are active under specific conditions; the sigma factor binds with the catalytic core of RNA polymerase to produce the holoenzyme and directs bacterial core RNA polymerase to specific promoter elements to initiate transcription; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the sigma-70 factor family. ECF subfamily. | 0.598 |
KRC16836.1 | rpoB | ASE31_06895 | ASE31_13020 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. | 0.449 |
KRC19200.1 | KRC27941.1 | ASE31_06125 | ASE31_14170 | Anti-sigma factor; Derived by automated computational analysis using gene prediction method: Protein Homology. | RNA polymerase subunit sigma; Bacteria have multiple sigma factors which are active under specific conditions; the sigma factor binds with the catalytic core of RNA polymerase to produce the holoenzyme and directs bacterial core RNA polymerase to specific promoter elements to initiate transcription; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the sigma-70 factor family. ECF subfamily. | 0.739 |
KRC22545.1 | KRC27941.1 | ASE31_21945 | ASE31_14170 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | RNA polymerase subunit sigma; Bacteria have multiple sigma factors which are active under specific conditions; the sigma factor binds with the catalytic core of RNA polymerase to produce the holoenzyme and directs bacterial core RNA polymerase to specific promoter elements to initiate transcription; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the sigma-70 factor family. ECF subfamily. | 0.721 |
KRC23725.1 | KRC27941.1 | ASE31_03815 | ASE31_14170 | Anti-anti-sigma factor; Derived by automated computational analysis using gene prediction method: Protein Homology. | RNA polymerase subunit sigma; Bacteria have multiple sigma factors which are active under specific conditions; the sigma factor binds with the catalytic core of RNA polymerase to produce the holoenzyme and directs bacterial core RNA polymerase to specific promoter elements to initiate transcription; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the sigma-70 factor family. ECF subfamily. | 0.862 |
KRC27940.1 | KRC27941.1 | ASE31_14165 | ASE31_14170 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | RNA polymerase subunit sigma; Bacteria have multiple sigma factors which are active under specific conditions; the sigma factor binds with the catalytic core of RNA polymerase to produce the holoenzyme and directs bacterial core RNA polymerase to specific promoter elements to initiate transcription; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the sigma-70 factor family. ECF subfamily. | 0.613 |
KRC27940.1 | KRC27942.1 | ASE31_14165 | ASE31_14175 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.732 |
KRC27941.1 | KRC16836.1 | ASE31_14170 | ASE31_06895 | RNA polymerase subunit sigma; Bacteria have multiple sigma factors which are active under specific conditions; the sigma factor binds with the catalytic core of RNA polymerase to produce the holoenzyme and directs bacterial core RNA polymerase to specific promoter elements to initiate transcription; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the sigma-70 factor family. ECF subfamily. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.598 |
KRC27941.1 | KRC19200.1 | ASE31_14170 | ASE31_06125 | RNA polymerase subunit sigma; Bacteria have multiple sigma factors which are active under specific conditions; the sigma factor binds with the catalytic core of RNA polymerase to produce the holoenzyme and directs bacterial core RNA polymerase to specific promoter elements to initiate transcription; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the sigma-70 factor family. ECF subfamily. | Anti-sigma factor; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.739 |
KRC27941.1 | KRC22545.1 | ASE31_14170 | ASE31_21945 | RNA polymerase subunit sigma; Bacteria have multiple sigma factors which are active under specific conditions; the sigma factor binds with the catalytic core of RNA polymerase to produce the holoenzyme and directs bacterial core RNA polymerase to specific promoter elements to initiate transcription; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the sigma-70 factor family. ECF subfamily. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.721 |
KRC27941.1 | KRC23725.1 | ASE31_14170 | ASE31_03815 | RNA polymerase subunit sigma; Bacteria have multiple sigma factors which are active under specific conditions; the sigma factor binds with the catalytic core of RNA polymerase to produce the holoenzyme and directs bacterial core RNA polymerase to specific promoter elements to initiate transcription; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the sigma-70 factor family. ECF subfamily. | Anti-anti-sigma factor; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.862 |
KRC27941.1 | KRC27940.1 | ASE31_14170 | ASE31_14165 | RNA polymerase subunit sigma; Bacteria have multiple sigma factors which are active under specific conditions; the sigma factor binds with the catalytic core of RNA polymerase to produce the holoenzyme and directs bacterial core RNA polymerase to specific promoter elements to initiate transcription; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the sigma-70 factor family. ECF subfamily. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.613 |
KRC27941.1 | KRC27942.1 | ASE31_14170 | ASE31_14175 | RNA polymerase subunit sigma; Bacteria have multiple sigma factors which are active under specific conditions; the sigma factor binds with the catalytic core of RNA polymerase to produce the holoenzyme and directs bacterial core RNA polymerase to specific promoter elements to initiate transcription; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the sigma-70 factor family. ECF subfamily. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.961 |
KRC27941.1 | rpoA | ASE31_14170 | ASE31_27315 | RNA polymerase subunit sigma; Bacteria have multiple sigma factors which are active under specific conditions; the sigma factor binds with the catalytic core of RNA polymerase to produce the holoenzyme and directs bacterial core RNA polymerase to specific promoter elements to initiate transcription; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the sigma-70 factor family. ECF subfamily. | DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. | 0.662 |
KRC27941.1 | rpoB | ASE31_14170 | ASE31_13020 | RNA polymerase subunit sigma; Bacteria have multiple sigma factors which are active under specific conditions; the sigma factor binds with the catalytic core of RNA polymerase to produce the holoenzyme and directs bacterial core RNA polymerase to specific promoter elements to initiate transcription; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the sigma-70 factor family. ECF subfamily. | DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. | 0.718 |
KRC27941.1 | rpoC | ASE31_14170 | ASE31_13025 | RNA polymerase subunit sigma; Bacteria have multiple sigma factors which are active under specific conditions; the sigma factor binds with the catalytic core of RNA polymerase to produce the holoenzyme and directs bacterial core RNA polymerase to specific promoter elements to initiate transcription; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the sigma-70 factor family. ECF subfamily. | DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. | 0.732 |
KRC27941.1 | rpoZ | ASE31_14170 | ASE31_30685 | RNA polymerase subunit sigma; Bacteria have multiple sigma factors which are active under specific conditions; the sigma factor binds with the catalytic core of RNA polymerase to produce the holoenzyme and directs bacterial core RNA polymerase to specific promoter elements to initiate transcription; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the sigma-70 factor family. ECF subfamily. | DNA-directed RNA polymerase subunit omega; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits. | 0.662 |
KRC27942.1 | KRC27940.1 | ASE31_14175 | ASE31_14165 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.732 |
KRC27942.1 | KRC27941.1 | ASE31_14175 | ASE31_14170 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | RNA polymerase subunit sigma; Bacteria have multiple sigma factors which are active under specific conditions; the sigma factor binds with the catalytic core of RNA polymerase to produce the holoenzyme and directs bacterial core RNA polymerase to specific promoter elements to initiate transcription; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the sigma-70 factor family. ECF subfamily. | 0.961 |
rpoA | KRC27941.1 | ASE31_27315 | ASE31_14170 | DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. | RNA polymerase subunit sigma; Bacteria have multiple sigma factors which are active under specific conditions; the sigma factor binds with the catalytic core of RNA polymerase to produce the holoenzyme and directs bacterial core RNA polymerase to specific promoter elements to initiate transcription; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the sigma-70 factor family. ECF subfamily. | 0.662 |