node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ANP46585.1 | ANP47383.1 | ATE48_11990 | ATE48_16420 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.473 |
ANP46585.1 | ANP47384.1 | ATE48_11990 | ATE48_16425 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.719 |
ANP47378.1 | ANP47379.1 | ATE48_16395 | ATE48_16400 | Hypothetical protein; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | 0.999 |
ANP47378.1 | ANP47382.1 | ATE48_16395 | ATE48_16415 | Hypothetical protein; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | Cytochrome B562; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
ANP47378.1 | ANP47383.1 | ATE48_16395 | ATE48_16420 | Hypothetical protein; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.577 |
ANP47378.1 | ANP47384.1 | ATE48_16395 | ATE48_16425 | Hypothetical protein; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.710 |
ANP47378.1 | ANP47385.1 | ATE48_16395 | ATE48_16430 | Hypothetical protein; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.465 |
ANP47378.1 | ANP47386.1 | ATE48_16395 | ATE48_16435 | Hypothetical protein; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.772 |
ANP47378.1 | ctaA | ATE48_16395 | ATE48_01050 | Hypothetical protein; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | Hypothetical protein; Catalyzes the oxidation of the C8 methyl side group on heme O porphyrin ring into a formyl group; Belongs to the COX15/CtaA family. Type 2 subfamily. | 0.682 |
ANP47378.1 | ctaB | ATE48_16395 | ATE48_16405 | Hypothetical protein; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | Protoheme IX farnesyltransferase; Converts heme B (protoheme IX) to heme O by substitution of the vinyl group on carbon 2 of heme B porphyrin ring with a hydroxyethyl farnesyl side group. | 0.999 |
ANP47378.1 | ctaG | ATE48_16395 | ATE48_16410 | Hypothetical protein; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | Hypothetical protein; Exerts its effect at some terminal stage of cytochrome c oxidase synthesis, probably by being involved in the insertion of the copper B into subunit I; Belongs to the COX11/CtaG family. | 0.964 |
ANP47379.1 | ANP47378.1 | ATE48_16400 | ATE48_16395 | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Hypothetical protein; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | 0.999 |
ANP47379.1 | ANP47382.1 | ATE48_16400 | ATE48_16415 | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Cytochrome B562; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
ANP47379.1 | ANP47383.1 | ATE48_16400 | ATE48_16420 | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.522 |
ANP47379.1 | ANP47384.1 | ATE48_16400 | ATE48_16425 | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.735 |
ANP47379.1 | ANP47385.1 | ATE48_16400 | ATE48_16430 | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.447 |
ANP47379.1 | ANP47386.1 | ATE48_16400 | ATE48_16435 | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.774 |
ANP47379.1 | ctaA | ATE48_16400 | ATE48_01050 | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Hypothetical protein; Catalyzes the oxidation of the C8 methyl side group on heme O porphyrin ring into a formyl group; Belongs to the COX15/CtaA family. Type 2 subfamily. | 0.696 |
ANP47379.1 | ctaB | ATE48_16400 | ATE48_16405 | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Protoheme IX farnesyltransferase; Converts heme B (protoheme IX) to heme O by substitution of the vinyl group on carbon 2 of heme B porphyrin ring with a hydroxyethyl farnesyl side group. | 0.999 |
ANP47379.1 | ctaG | ATE48_16400 | ATE48_16410 | Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Hypothetical protein; Exerts its effect at some terminal stage of cytochrome c oxidase synthesis, probably by being involved in the insertion of the copper B into subunit I; Belongs to the COX11/CtaG family. | 0.898 |