STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AOW13520.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (102 aa)    
Predicted Functional Partners:
AOW15413.1
MBL fold metallo-hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 0.841
rpoA
DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
    
 0.743
AOW15540.1
ATP-dependent RNA helicase HrpA; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.736
rpoZ
DNA-directed RNA polymerase subunit omega; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits.
   
 0.732
rpoB
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
    
 0.730
nuoC
NADH-quinone oxidoreductase subunit C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family.
    
   0.518
nuoD
NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family.
    
   0.514
AOW13200.1
RNA helicase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the DEAD box helicase family.
  
 0.513
AOW13771.1
ATP-dependent RNA helicase DbpA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the DEAD box helicase family.
  
 0.513
AOW15748.1
NADH-quinone oxidoreductase subunit G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family.
    
   0.485
Your Current Organism:
Hydrogenophaga crassostreae
NCBI taxonomy Id: 1763535
Other names: H. crassostreae, Hydrogenophaga crassostreae Baek et al. 2017, Hydrogenophaga sp. LPB0072, JCM 31188, KACC 18705, strain LPB0072
Server load: low (24%) [HD]