STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
dnaJMolecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] (386 aa)    
Predicted Functional Partners:
dnaK
Molecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family.
 0.999
grpE
Nucleotide exchange factor GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds [...]
 
 
 0.998
htpG
Molecular chaperone HtpG; Molecular chaperone. Has ATPase activity.
  
 0.995
OPG14911.1
ATP-dependent Clp protease ATP-binding subunit ClpC; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ClpA/ClpB family.
  
 
 0.961
OPG16624.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.960
OPG17620.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.949
OPG14970.1
Sulfotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.949
OPG17193.1
(2Fe-2S)-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 0.942
groEL
Chaperonin GroL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions.
 
 0.937
OPG16130.1
Glutaredoxin; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.933
Your Current Organism:
Acidibacillus ferrooxidans
NCBI taxonomy Id: 1765683
Other names: A. ferrooxidans, Alicyclobacillaceae bacterium ITV01, Alicyclobacillaceae bacterium SLC40, Firmicutes bacterium BSH1, Firmicutes bacterium MCF99, Gram-positive iron-oxidizing acidophile G1, Gram-positive iron-oxidizing acidophile SLC66, bacterium GS1, strain SLC66
Server load: low (10%) [HD]