STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
APZ43389.1Dihydroneopterin triphosphate diphosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (147 aa)    
Predicted Functional Partners:
nnrD
Bifunctional ADP-dependent (S)-NAD(P)H-hydrate dehydratase/NAD(P)H-hydrate epimerase; Bifunctional enzyme that catalyzes the epimerization of the S- and R-forms of NAD(P)HX and the dehydration of the S-form of NAD(P)HX at the expense of ADP, which is converted to AMP. This allows the repair of both epimers of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration. Catalyzes the epimerization of the S- and R-forms of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration. This is a prerequisite for the S-spec [...]
  
 0.992
aspS
aspartate--tRNA ligase; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn); Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily.
  
   0.935
folE
GTP cyclohydrolase I FolE; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
  0.904
folE2
GTP cyclohydrolase; Converts GTP to 7,8-dihydroneopterin triphosphate.
     
  0.897
APZ43388.1
Acetyltransferase/hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology.
      0.889
rnr
Ribonuclease R; 3'-5' exoribonuclease that releases 5'-nucleoside monophosphates and is involved in maturation of structured RNAs.
   
 0.879
APZ44157.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 0.855
deaD
ATP-dependent RNA helicase; DEAD-box RNA helicase involved in various cellular processes at low temperature, including ribosome biogenesis, mRNA degradation and translation initiation.
   
 0.855
rhlB
ATP-dependent RNA helicase RhlB; DEAD-box RNA helicase involved in RNA degradation. Has RNA- dependent ATPase activity and unwinds double-stranded RNA. Belongs to the DEAD box helicase family. RhlB subfamily.
   
 0.855
rph
Ribonuclease PH; Phosphorolytic 3'-5' exoribonuclease that plays an important role in tRNA 3'-end maturation. Removes nucleotide residues following the 3'-CCA terminus of tRNAs; can also add nucleotides to the ends of RNA molecules by using nucleoside diphosphates as substrates, but this may not be physiologically important. Probably plays a role in initiation of 16S rRNA degradation (leading to ribosome degradation) during starvation.
     
 0.813
Your Current Organism:
Acidihalobacter ferrooxidans
NCBI taxonomy Id: 1765967
Other names: A. ferrooxidans
Server load: low (28%) [HD]