STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
secYPreprotein translocase secY subunit; The central subunit of the protein translocation channel SecYEG. Consists of two halves formed by TMs 1-5 and 6-10. These two domains form a lateral gate at the front which open onto the bilayer between TMs 2 and 7, and are clamped together by SecE at the back. The channel is closed by both a pore ring composed of hydrophobic SecY resides and a short helix (helix 2A) on the extracellular side of the membrane which forms a plug. The plug probably moves laterally to allow the channel to open. The ring and the pore may move independently. (441 aa)    
Predicted Functional Partners:
secE
Preprotein translocase subunit SecE; Essential subunit of the Sec protein translocation channel SecYEG. Clamps together the 2 halves of SecY. May contact the channel plug during translocation.
  
 0.999
secA
Protein export cytoplasm protein SecA ATPase RNA helicase; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane.
 
 
 0.999
secG
Preprotein translocase subunit SecG; Involved in protein export. Participates in an early event of protein translocation; Belongs to the SecG family.
  
 0.999
rpsE_1
SSU ribosomal protein S5p (S2e); Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body. Belongs to the universal ribosomal protein uS5 family.
 
 0.998
secA2
Protein export cytoplasm protein SecA ATPase RNA helicase; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane.
 
 
 0.998
rplF_1
LSU ribosomal protein L6p (L9e); This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center; Belongs to the universal ribosomal protein uL6 family.
 
 0.996
rplR_2
LSU ribosomal protein L18p (L5e); This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance.
 
 
 0.996
rplP
LSU ribosomal protein L16p (L10e); Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family.
 
 
 0.995
rplE_1
LSU ribosomal protein L5p (L11e); This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs.
 
 
 0.995
adk
Adenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family.
 
  
 0.995
Your Current Organism:
Mycolicibacterium fortuitum
NCBI taxonomy Id: 1766
Other names: ATCC 6841, CCUG 20994, CIP 104534, DSM 46621, IFO 13159, JCM 6387, M. fortuitum, Mycobacterium fortuitum, Mycobacterium giae, Mycobacterium minetti, NBRC 13159, NCTC 10394
Server load: low (28%) [HD]