node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
OEJ73049.1 | OEJ73664.1 | BH720_21070 | BH720_18600 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | MFS transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.427 |
OEJ73663.1 | OEJ73664.1 | BH720_18595 | BH720_18600 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | MFS transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.444 |
OEJ73664.1 | OEJ73049.1 | BH720_18600 | BH720_21070 | MFS transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.427 |
OEJ73664.1 | OEJ73663.1 | BH720_18600 | BH720_18595 | MFS transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | 0.444 |
OEJ73664.1 | OEJ74415.1 | BH720_18600 | BH720_14405 | MFS transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | 0.509 |
OEJ73664.1 | ndhC | BH720_18600 | BH720_18615 | MFS transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. | NAD(P)H-quinone oxidoreductase subunit 3; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.554 |
OEJ73664.1 | ndhJ | BH720_18600 | BH720_18605 | MFS transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.554 |
OEJ73664.1 | ndhK-2 | BH720_18600 | BH720_18610 | MFS transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration; Belongs to the complex I 20 kDa subunit family. | 0.554 |
OEJ74415.1 | OEJ73664.1 | BH720_14405 | BH720_18600 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | MFS transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.509 |
ndhC | OEJ73664.1 | BH720_18615 | BH720_18600 | NAD(P)H-quinone oxidoreductase subunit 3; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | MFS transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.554 |
ndhC | ndhJ | BH720_18615 | BH720_18605 | NAD(P)H-quinone oxidoreductase subunit 3; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | NADH dehydrogenase; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.999 |
ndhC | ndhK-2 | BH720_18615 | BH720_18610 | NAD(P)H-quinone oxidoreductase subunit 3; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | NADH dehydrogenase; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration; Belongs to the complex I 20 kDa subunit family. | 0.999 |
ndhJ | OEJ73664.1 | BH720_18605 | BH720_18600 | NADH dehydrogenase; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | MFS transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.554 |
ndhJ | ndhC | BH720_18605 | BH720_18615 | NADH dehydrogenase; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | NAD(P)H-quinone oxidoreductase subunit 3; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.999 |
ndhJ | ndhK-2 | BH720_18605 | BH720_18610 | NADH dehydrogenase; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | NADH dehydrogenase; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration; Belongs to the complex I 20 kDa subunit family. | 0.999 |
ndhK-2 | OEJ73664.1 | BH720_18610 | BH720_18600 | NADH dehydrogenase; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration; Belongs to the complex I 20 kDa subunit family. | MFS transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.554 |
ndhK-2 | ndhC | BH720_18610 | BH720_18615 | NADH dehydrogenase; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration; Belongs to the complex I 20 kDa subunit family. | NAD(P)H-quinone oxidoreductase subunit 3; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.999 |
ndhK-2 | ndhJ | BH720_18610 | BH720_18605 | NADH dehydrogenase; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration; Belongs to the complex I 20 kDa subunit family. | NADH dehydrogenase; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.999 |