STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ORB75695.14-oxalocrotonate decarboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (261 aa)    
Predicted Functional Partners:
ORB75696.1
4-oxalocrotonate tautomerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 4-oxalocrotonate tautomerase family.
 
  
 0.964
ORB75693.1
Glyoxalase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
   
 0.936
ORB73014.1
4-hydroxy-2-oxovalerate aldolase; Catalyzes the retro-aldol cleavage of 4-hydroxy-2- oxopentanoate to pyruvate and acetaldehyde. Is involved in the meta- cleavage pathway for the degradation of aromatic compounds. Belongs to the 4-hydroxy-2-oxovalerate aldolase family.
 
 
 0.906
ORB75679.1
4-hydroxy-2-oxovalerate aldolase; Catalyzes the retro-aldol cleavage of 4-hydroxy-2- oxopentanoate to pyruvate and acetaldehyde. Is involved in the meta- cleavage pathway for the degradation of aromatic compounds. Belongs to the 4-hydroxy-2-oxovalerate aldolase family.
 
 
 0.891
ORB71434.1
4-hydroxy-2-oxovalerate aldolase; Catalyzes the retro-aldol cleavage of 4-hydroxy-2- oxopentanoate to pyruvate and acetaldehyde. Is involved in the meta- cleavage pathway for the degradation of aromatic compounds. Belongs to the 4-hydroxy-2-oxovalerate aldolase family.
 
 
 0.888
ORB71480.1
Acetaldehyde dehydrogenase (acetylating); Catalyzes the conversion of acetaldehyde to acetyl-CoA, using NAD(+) and coenzyme A. Is the final enzyme in the meta-cleavage pathway for the degradation of aromatic compounds.
 
  
 0.859
ORB75680.1
Acetaldehyde dehydrogenase; Catalyzes the conversion of acetaldehyde to acetyl-CoA, using NAD(+) and coenzyme A. Is the final enzyme in the meta-cleavage pathway for the degradation of aromatic compounds.
 
  
 0.858
ORB75694.1
2-keto-4-pentenoate hydratase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 
0.856
ORB75716.1
2-dehydro-3-deoxyglucarate aldolase; Cleaves 5-dehydro-4-deoxy-glucarate and 2-dehydro-3-deoxy-D-glucarate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the HpcH/HpaI aldolase family.
 
 
 0.854
ORB73053.1
Acetaldehyde dehydrogenase (acetylating); Catalyzes the conversion of acetaldehyde to acetyl-CoA, using NAD(+) and coenzyme A. Is the final enzyme in the meta-cleavage pathway for the degradation of aromatic compounds.
 
  
 0.838
Your Current Organism:
Mycobacterium scrofulaceum
NCBI taxonomy Id: 1783
Other names: ATCC 19981, CCUG 29045, CIP 105416, DSM 43992, JCM 6381, M. scrofulaceum, NCTC 10803
Server load: low (20%) [HD]