STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
OAG27560.1tRNA (adenine-N1)-methyltransferase; Catalyzes the S-adenosyl-L-methionine-dependent formation of N(1)-methyladenine at position 58 (m1A58) in tRNA. (255 aa)    
Predicted Functional Partners:
OAG27596.1
ATP pyrophosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TtcA family.
 
  
 0.818
TH606_06220
Hypothetical protein; Incomplete; partial in the middle of a contig; missing stop; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.798
OAG27561.1
Aldolase; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.773
rtcA
Hypothetical protein; Catalyzes the conversion of 3'-phosphate to a 2',3'-cyclic phosphodiester at the end of RNA. The mechanism of action of the enzyme occurs in 3 steps: (A) adenylation of the enzyme by ATP; (B) transfer of adenylate to an RNA-N3'P to produce RNA-N3'PP5'A; (C) and attack of the adjacent 2'-hydroxyl on the 3'-phosphorus in the diester linkage to produce the cyclic end product. The biological role of this enzyme is unknown but it is likely to function in some aspects of cellular RNA processing.
   
    0.757
rlmE
50S rRNA methyltransferase; Specifically methylates the uridine in position 2552 of 23S rRNA at the 2'-O position of the ribose in the fully assembled 50S ribosomal subunit.
   
  
 0.676
OAG27409.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+; Belongs to the class I-like SAM-binding methyltransferase superfamily. RNA M5U methyltransferase family.
   
  
 0.673
OAG27224.1
50S ribosomal protein L30; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
   0.651
bpsA
Hypothetical protein; Involved in the biosynthesis of branched-chain polyamines, which support the growth of thermophiles under high-temperature conditions. Catalyzes the sequential condensation of spermidine with the aminopropyl groups of decarboxylated S-adenosylmethionines to produce N(4)-bis(aminopropyl)spermidine via N(4)-aminopropylspermidine.
  
     0.485
truB
Hypothetical protein; Responsible for synthesis of pseudouridine from uracil-55 in the psi GC loop of transfer RNAs; Belongs to the pseudouridine synthase TruB family. Type 1 subfamily.
   
  
 0.450
rsmA
Hypothetical protein; Specifically dimethylates two adjacent adenosines (A1518 and A1519) in the loop of a conserved hairpin near the 3'-end of 16S rRNA in the 30S particle. May play a critical role in biogenesis of 30S subunits.
  
  
 0.406
Your Current Organism:
Thermodesulfatator autotrophicus
NCBI taxonomy Id: 1795632
Other names: DSM 101864, MCCC 1A01871, T. autotrophicus, Thermodesulfatator autotrophicus Lai et al. 2016, Thermodesulfatator sp. S606, strain S606
Server load: low (20%) [HD]