node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ORX02118.1 | clpB | AWC30_12980 | AWC30_04855 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | ATP-dependent chaperone ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. | 0.910 |
ORX02118.1 | dnaJ1 | AWC30_12980 | AWC30_04815 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.921 |
ORX02118.1 | groEL | AWC30_12980 | AWC30_05330 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Molecular chaperone GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.784 |
ORX02118.1 | groEL-2 | AWC30_12980 | AWC30_16770 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Molecular chaperone GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.784 |
ORX02118.1 | grpE | AWC30_12980 | AWC30_04810 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Molecular chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP [...] | 0.961 |
ORX02118.1 | htpG | AWC30_12980 | AWC30_00970 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Molecular chaperone HtpG; Molecular chaperone. Has ATPase activity. | 0.970 |
ORX06873.1 | clpB | AWC30_04655 | AWC30_04855 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | ATP-dependent chaperone ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. | 0.910 |
ORX06873.1 | dnaJ1 | AWC30_04655 | AWC30_04815 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.946 |
ORX06873.1 | dnaK | AWC30_04655 | AWC30_04805 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Molecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. | 0.597 |
ORX06873.1 | groEL | AWC30_04655 | AWC30_05330 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Molecular chaperone GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.815 |
ORX06873.1 | groEL-2 | AWC30_04655 | AWC30_16770 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Molecular chaperone GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.814 |
ORX06873.1 | grpE | AWC30_04655 | AWC30_04810 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Molecular chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP [...] | 0.961 |
ORX06873.1 | htpG | AWC30_04655 | AWC30_00970 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Molecular chaperone HtpG; Molecular chaperone. Has ATPase activity. | 0.970 |
ORX06886.1 | clpB | AWC30_04730 | AWC30_04855 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | ATP-dependent chaperone ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. | 0.910 |
ORX06886.1 | dnaJ1 | AWC30_04730 | AWC30_04815 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.935 |
ORX06886.1 | dnaK | AWC30_04730 | AWC30_04805 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Molecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. | 0.532 |
ORX06886.1 | groEL | AWC30_04730 | AWC30_05330 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Molecular chaperone GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.784 |
ORX06886.1 | groEL-2 | AWC30_04730 | AWC30_16770 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Molecular chaperone GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.784 |
ORX06886.1 | grpE | AWC30_04730 | AWC30_04810 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Molecular chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP [...] | 0.967 |
ORX06886.1 | htpG | AWC30_04730 | AWC30_00970 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Molecular chaperone HtpG; Molecular chaperone. Has ATPase activity. | 0.970 |