STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
rpsM30S ribosomal protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites. Belongs to the universal ribosomal protein uS13 family. (129 aa)    
Predicted Functional Partners:
rplL
50S ribosomal protein L7/L12; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family.
  
 
 0.999
rplJ
50S ribosomal protein L10; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family.
  
 
 0.999
efp
Elongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase.
  
 
 0.999
rpsR
30S ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family.
   
 
 0.999
rpsF
30S ribosomal protein S6; Binds together with S18 to 16S ribosomal RNA.
  
 
 0.999
OGY78372.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
   
 
 0.999
rpoC
Hypothetical protein; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
  
 
 0.999
rpsT
Hypothetical protein; Binds directly to 16S ribosomal RNA.
  
 
 0.999
OGY79930.1
50S ribosomal protein L27; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.999
rplI
50S ribosomal protein L9; Binds to the 23S rRNA.
  
 
 0.999
Your Current Organism:
Kerfeldbacteria bacterium RIFCSPHIGHO202FULL4214
NCBI taxonomy Id: 1798540
Other names: C. Kerfeldbacteria bacterium RIFCSPHIGHO2_02_FULL_42_14, Candidatus Kerfeldbacteria bacterium RIFCSPHIGHO2_02_FULL_42_14
Server load: low (10%) [HD]