STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
prsRibose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily. (325 aa)    
Predicted Functional Partners:
glmU
UDP-N-acetylglucosamine diphosphorylase/glucosamine-1-phosphate N-acetyltransferase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain.
  
 0.989
OGH97736.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
   
 0.928
OGH96064.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
    
 0.880
rpsD
30S ribosomal protein S11; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit.
  
  
 0.850
efp
Hypothetical protein; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase.
  
    0.848
lysS
lysine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family.
   
 
 0.844
gltX
glutamate--tRNA ligase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily.
  
 
 0.841
OGH95742.1
Uracil phosphoribosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the UPRTase family.
  
 
 0.840
rplY
Hypothetical protein; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. CTC subfamily.
  
  
 0.840
rplC
50S ribosomal protein L4; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit; Belongs to the universal ribosomal protein uL3 family.
   
 
 0.834
Your Current Organism:
Melainabacteria bacterium GWA2349
NCBI taxonomy Id: 1801604
Other names: C. Melainabacteria bacterium GWA2_34_9, Candidatus Melainabacteria bacterium GWA2_34_9
Server load: low (20%) [HD]