STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
greA-2Transcription elongation factor GreA; Necessary for efficient RNA polymerase transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by cleavage factors such as GreA or GreB allows the resumption of elongation from the new 3'terminus. GreA releases sequences of 2 to 3 nucleotides. (165 aa)    
Predicted Functional Partners:
rpoC
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
  
 
 0.974
rpoA
DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
  
 
 0.955
rpoB
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
  
 
 0.949
OIO17681.1
DNA-directed RNA polymerase subunit omega; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits.
   
 
 0.929
OIO14600.1
Chemotaxis protein CheA; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.798
argC
N-acetyl-gamma-glutamyl-phosphate reductase; Catalyzes the NADPH-dependent reduction of N-acetyl-5- glutamyl phosphate to yield N-acetyl-L-glutamate 5-semialdehyde. Belongs to the NAGSA dehydrogenase family. Type 1 subfamily.
  
    0.790
OIO14601.1
Fused signal transduction protein/response regulator; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.774
OIO14602.1
UDP-2,3-diacylglucosamine hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.774
rplQ
50S ribosomal protein L17; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
  
 0.766
OIO14599.1
Chemotaxis protein CheW; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.764
Your Current Organism:
Helicobacteraceae bacterium CG1023614
NCBI taxonomy Id: 1805214
Other names: H. bacterium CG1_02_36_14, Helicobacteraceae bacterium CG1_02_36_14
Server load: low (22%) [HD]