STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
OLB36525.1Hypothetical protein; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (176 aa)    
Predicted Functional Partners:
atpB
ATP synthase F0 subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family.
 
 0.999
atpE
Hypothetical protein; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
 
 0.999
OLB36526.1
ATP synthase F1 subunit delta; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
 
 0.999
atpA
F0F1 ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit.
 
 0.999
atpG
ATP synthase F1 subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex.
 
 0.999
atpC
F0F1 ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane.
 
 0.999
OLB40181.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.996
adk
Adenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family.
   
 
 0.946
OLB37739.1
30S ribosomal protein S8; Derived by automated computational analysis using gene prediction method: GeneMarkS+; Belongs to the universal ribosomal protein uS8 family.
   
  
 0.945
rplP
50S ribosomal protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family.
   
  
 0.945
Your Current Organism:
Rokubacteria bacterium 13220CM2648
NCBI taxonomy Id: 1805369
Other names: C. Rokubacteria bacterium 13_2_20CM_2_64_8, Candidatus Rokubacteria bacterium 13_2_20CM_2_64_8
Server load: low (22%) [HD]