STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ANX03220.1Binds with the catalytic core of RNA polymerase to produce the holoenzyme; this sigma factor is responsible for the expression of heat shock promoters; Derived by automated computational analysis using gene prediction method: Protein Homology. (286 aa)    
Predicted Functional Partners:
rpoA
DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
 
 
 0.946
rpoZ
Hypothetical protein; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits.
 
 
 
 0.935
rpoB
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
 
 
 0.883
rpoC
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
 
 
 0.861
dnaQ
DNA polymerase III subunit epsilon; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. The epsilon subunit contain the editing function and is a proofreading 3'- 5' exonuclease.
   
 0.819
dnaG
Hypothetical protein; RNA polymerase that catalyzes the synthesis of short RNA molecules used as primers for DNA polymerase during DNA replication.
  
 0.793
ANX04784.1
6-O-methylguanine DNA methyltransferase; Regulates genes involved in the repair of alkylated DNA; repairs DNA containing 6-O-methylguanine; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
   0.781
ANX03221.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
       0.773
nusA
Transcription termination/antitermination protein NusA; Participates in both transcription termination and antitermination.
 
 
 0.741
dnaJ
Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...]
  
 
 0.738
Your Current Organism:
Immundisolibacter cernigliae
NCBI taxonomy Id: 1810504
Other names: ATCC TSD-58, DSM 103040, Gammaproteobacteria bacterium TR3.2, I. cernigliae, Immundisolibacter cernigliae Corteselli et al. 2017, strain TR3.2
Server load: low (18%) [HD]