STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
OGI48577.1Adenylosuccinate lyase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. (471 aa)    
Predicted Functional Partners:
purL
Phosphoribosylformylglycinamidine synthase; Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate.
  
 
 0.983
purC
Phosphoribosylaminoimidazolesuccinocarboxamide synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the SAICAR synthetase family.
  
 0.980
purD
Phosphoribosylamine--glycine ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GARS family.
  
 0.976
purA
Adenylosuccinate synthase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family.
 
 0.975
purH
Bifunctional phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.974
purE
5-(carboxyamino)imidazole ribonucleotide mutase; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR).
  
 
 0.968
purN
Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate.
  
 0.948
purF
Amidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine; In the C-terminal section; belongs to the purine/pyrimidine phosphoribosyltransferase family.
  
 
 0.938
guaB
IMP dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family.
 
 0.912
purM
Phosphoribosylformylglycinamidine cyclo-ligase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.911
Your Current Organism:
Muproteobacteria bacterium RBG166534
NCBI taxonomy Id: 1817760
Other names: C. Muproteobacteria bacterium RBG_16_65_34, Candidatus Muproteobacteria bacterium RBG_16_65_34
Server load: low (24%) [HD]