node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
OGD72335.1 | gyrA | A2Y64_00500 | A2Y64_06120 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | DNA gyrase subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. | 0.621 |
OGD72350.1 | gyrA | A2Y64_00600 | A2Y64_06120 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | DNA gyrase subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. | 0.614 |
OGD72490.1 | gyrA | A2Y64_04710 | A2Y64_06120 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | DNA gyrase subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. | 0.614 |
OGD78904.1 | OGD78947.1 | A2Y64_04835 | A2Y64_02150 | Molecular chaperone DnaK; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heat shock protein 70 family. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | 0.600 |
OGD78904.1 | gyrA | A2Y64_04835 | A2Y64_06120 | Molecular chaperone DnaK; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heat shock protein 70 family. | DNA gyrase subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. | 0.658 |
OGD78904.1 | rpsS | A2Y64_04835 | A2Y64_08660 | Molecular chaperone DnaK; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heat shock protein 70 family. | 50S ribosomal protein L22; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. | 0.904 |
OGD78947.1 | OGD78904.1 | A2Y64_02150 | A2Y64_04835 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Molecular chaperone DnaK; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heat shock protein 70 family. | 0.600 |
OGD78947.1 | ftsZ | A2Y64_02150 | A2Y64_07955 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Cell division protein FtsZ; Essential cell division protein that forms a contractile ring structure (Z ring) at the future cell division site. The regulation of the ring assembly controls the timing and the location of cell division. One of the functions of the FtsZ ring is to recruit other cell division proteins to the septum to produce a new cell wall between the dividing cells. Binds GTP and shows GTPase activity. | 0.564 |
OGD78947.1 | gyrA | A2Y64_02150 | A2Y64_06120 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | DNA gyrase subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. | 0.618 |
OGD78947.1 | gyrB | A2Y64_02150 | A2Y64_08565 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Hypothetical protein; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. | 0.687 |
OGD78947.1 | rsmG | A2Y64_02150 | A2Y64_00110 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Hypothetical protein; Specifically methylates the N7 position of a guanine in 16S rRNA; Belongs to the methyltransferase superfamily. RNA methyltransferase RsmG family. | 0.580 |
ftsZ | OGD78947.1 | A2Y64_07955 | A2Y64_02150 | Cell division protein FtsZ; Essential cell division protein that forms a contractile ring structure (Z ring) at the future cell division site. The regulation of the ring assembly controls the timing and the location of cell division. One of the functions of the FtsZ ring is to recruit other cell division proteins to the septum to produce a new cell wall between the dividing cells. Binds GTP and shows GTPase activity. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | 0.564 |
ftsZ | gyrA | A2Y64_07955 | A2Y64_06120 | Cell division protein FtsZ; Essential cell division protein that forms a contractile ring structure (Z ring) at the future cell division site. The regulation of the ring assembly controls the timing and the location of cell division. One of the functions of the FtsZ ring is to recruit other cell division proteins to the septum to produce a new cell wall between the dividing cells. Binds GTP and shows GTPase activity. | DNA gyrase subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. | 0.685 |
gyrA | OGD72335.1 | A2Y64_06120 | A2Y64_00500 | DNA gyrase subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | 0.621 |
gyrA | OGD72350.1 | A2Y64_06120 | A2Y64_00600 | DNA gyrase subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | 0.614 |
gyrA | OGD72490.1 | A2Y64_06120 | A2Y64_04710 | DNA gyrase subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | 0.614 |
gyrA | OGD78904.1 | A2Y64_06120 | A2Y64_04835 | DNA gyrase subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. | Molecular chaperone DnaK; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heat shock protein 70 family. | 0.658 |
gyrA | OGD78947.1 | A2Y64_06120 | A2Y64_02150 | DNA gyrase subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | 0.618 |
gyrA | ftsZ | A2Y64_06120 | A2Y64_07955 | DNA gyrase subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. | Cell division protein FtsZ; Essential cell division protein that forms a contractile ring structure (Z ring) at the future cell division site. The regulation of the ring assembly controls the timing and the location of cell division. One of the functions of the FtsZ ring is to recruit other cell division proteins to the septum to produce a new cell wall between the dividing cells. Binds GTP and shows GTPase activity. | 0.685 |
gyrA | gyrB | A2Y64_06120 | A2Y64_08565 | DNA gyrase subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. | Hypothetical protein; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. | 0.999 |