STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
OAP86694.1Rossman fold protein, TIGR00730 family; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the LOG family. (254 aa)    
Predicted Functional Partners:
OAP86693.1
Succinyl-diaminopimelate desuccinylase; Catalyzes the formation of succinate and diaminoheptanedioate from succinyldiaminoheptanedioate; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.808
OAP86692.1
Purine-nucleoside phosphorylase; The purine nucleoside phosphorylases catalyze the phosphorolytic breakdown of the N-glycosidic bond in the beta- (deoxy)ribonucleoside molecules, with the formation of the corresponding free purine bases and pentose-1-phosphate.
    
  0.741
miaA
tRNA (adenosine(37)-N6)-dimethylallyltransferase MiaA; Catalyzes the transfer of a dimethylallyl group onto the adenine at position 37 in tRNAs that read codons beginning with uridine, leading to the formation of N6-(dimethylallyl)adenosine (i(6)A); Belongs to the IPP transferase family.
     
 0.711
miaB
tRNA-2-methylthio-N(6)-dimethylallyladenosine synthase MiaB; Catalyzes the methylthiolation of N6-(dimethylallyl)adenosine (i(6)A), leading to the formation of 2-methylthio-N6- (dimethylallyl)adenosine (ms(2)i(6)A) at position 37 in tRNAs that read codons beginning with uridine.
      
 0.688
OAP85215.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
  0.658
OAP85641.1
NADH-quinone oxidoreductase subunit M; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
  0.560
OAP86583.1
Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
  0.560
OAP86162.1
Glycosyl transferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.555
nuoI
NADH-quinone oxidoreductase subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient.
   
 
  0.537
nuoK
NADH-quinone oxidoreductase subunit K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family.
   
 
  0.535
Your Current Organism:
Actinomycetaceae bacterium BA112
NCBI taxonomy Id: 1823756
Other names: A. bacterium BA112
Server load: low (16%) [HD]