node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
OAP85185.1 | OAP87058.1 | A4H34_08720 | A4H34_02525 | Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP-dependent helicase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.985 |
OAP85185.1 | pnp | A4H34_08720 | A4H34_09570 | Derived by automated computational analysis using gene prediction method: Protein Homology. | Polyribonucleotide nucleotidyltransferase; Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction. | 0.783 |
OAP85185.1 | rph | A4H34_08720 | A4H34_06325 | Derived by automated computational analysis using gene prediction method: Protein Homology. | Ribonuclease PH; Phosphorolytic 3'-5' exoribonuclease that plays an important role in tRNA 3'-end maturation. Removes nucleotide residues following the 3'-CCA terminus of tRNAs; can also add nucleotides to the ends of RNA molecules by using nucleoside diphosphates as substrates, but this may not be physiologically important. Probably plays a role in initiation of 16S rRNA degradation (leading to ribosome degradation) during starvation. | 0.994 |
OAP85185.1 | rpsA | A4H34_08720 | A4H34_07535 | Derived by automated computational analysis using gene prediction method: Protein Homology. | 30S ribosomal protein S1; In Escherichia coli this protein is involved in binding to the leader sequence of mRNAs and is itself bound to the 30S subunit; autoregulates expression via a C-terminal domain; in most gram negative organisms this protein is composed of 6 repeats of the S1 domain while in gram positive there are 4 repeats; the S1 nucleic acid-binding domain is found associated with other proteins; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.980 |
OAP85185.1 | rpsD | A4H34_08720 | A4H34_07090 | Derived by automated computational analysis using gene prediction method: Protein Homology. | 30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. | 0.972 |
OAP85185.1 | rpsK | A4H34_08720 | A4H34_05350 | Derived by automated computational analysis using gene prediction method: Protein Homology. | 30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family. | 0.970 |
OAP85981.1 | OAP86727.1 | A4H34_01995 | A4H34_06320 | Hypothetical protein; RNaseP catalyzes the removal of the 5'-leader sequence from pre-tRNA to produce the mature 5'-terminus. It can also cleave other RNA substrates such as 4.5S RNA. The protein component plays an auxiliary but essential role in vivo by binding to the 5'-leader sequence and broadening the substrate specificity of the ribozyme. | MBL fold metallo-hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.780 |
OAP85981.1 | OAP86729.1 | A4H34_01995 | A4H34_06330 | Hypothetical protein; RNaseP catalyzes the removal of the 5'-leader sequence from pre-tRNA to produce the mature 5'-terminus. It can also cleave other RNA substrates such as 4.5S RNA. The protein component plays an auxiliary but essential role in vivo by binding to the 5'-leader sequence and broadening the substrate specificity of the ribozyme. | Non-canonical purine NTP pyrophosphatase; Pyrophosphatase that catalyzes the hydrolysis of nucleoside triphosphates to their monophosphate derivatives, with a high preference for the non-canonical purine nucleotides XTP (xanthosine triphosphate), dITP (deoxyinosine triphosphate) and ITP. Seems to function as a house-cleaning enzyme that removes non-canonical purine nucleotides from the nucleotide pool, thus preventing their incorporation into DNA/RNA and avoiding chromosomal lesions. Belongs to the HAM1 NTPase family. | 0.531 |
OAP85981.1 | pnp | A4H34_01995 | A4H34_09570 | Hypothetical protein; RNaseP catalyzes the removal of the 5'-leader sequence from pre-tRNA to produce the mature 5'-terminus. It can also cleave other RNA substrates such as 4.5S RNA. The protein component plays an auxiliary but essential role in vivo by binding to the 5'-leader sequence and broadening the substrate specificity of the ribozyme. | Polyribonucleotide nucleotidyltransferase; Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction. | 0.755 |
OAP85981.1 | rph | A4H34_01995 | A4H34_06325 | Hypothetical protein; RNaseP catalyzes the removal of the 5'-leader sequence from pre-tRNA to produce the mature 5'-terminus. It can also cleave other RNA substrates such as 4.5S RNA. The protein component plays an auxiliary but essential role in vivo by binding to the 5'-leader sequence and broadening the substrate specificity of the ribozyme. | Ribonuclease PH; Phosphorolytic 3'-5' exoribonuclease that plays an important role in tRNA 3'-end maturation. Removes nucleotide residues following the 3'-CCA terminus of tRNAs; can also add nucleotides to the ends of RNA molecules by using nucleoside diphosphates as substrates, but this may not be physiologically important. Probably plays a role in initiation of 16S rRNA degradation (leading to ribosome degradation) during starvation. | 0.932 |
OAP85981.1 | rpsA | A4H34_01995 | A4H34_07535 | Hypothetical protein; RNaseP catalyzes the removal of the 5'-leader sequence from pre-tRNA to produce the mature 5'-terminus. It can also cleave other RNA substrates such as 4.5S RNA. The protein component plays an auxiliary but essential role in vivo by binding to the 5'-leader sequence and broadening the substrate specificity of the ribozyme. | 30S ribosomal protein S1; In Escherichia coli this protein is involved in binding to the leader sequence of mRNAs and is itself bound to the 30S subunit; autoregulates expression via a C-terminal domain; in most gram negative organisms this protein is composed of 6 repeats of the S1 domain while in gram positive there are 4 repeats; the S1 nucleic acid-binding domain is found associated with other proteins; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.528 |
OAP85981.1 | rpsD | A4H34_01995 | A4H34_07090 | Hypothetical protein; RNaseP catalyzes the removal of the 5'-leader sequence from pre-tRNA to produce the mature 5'-terminus. It can also cleave other RNA substrates such as 4.5S RNA. The protein component plays an auxiliary but essential role in vivo by binding to the 5'-leader sequence and broadening the substrate specificity of the ribozyme. | 30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. | 0.488 |
OAP86727.1 | OAP85981.1 | A4H34_06320 | A4H34_01995 | MBL fold metallo-hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; RNaseP catalyzes the removal of the 5'-leader sequence from pre-tRNA to produce the mature 5'-terminus. It can also cleave other RNA substrates such as 4.5S RNA. The protein component plays an auxiliary but essential role in vivo by binding to the 5'-leader sequence and broadening the substrate specificity of the ribozyme. | 0.780 |
OAP86727.1 | OAP86729.1 | A4H34_06320 | A4H34_06330 | MBL fold metallo-hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Non-canonical purine NTP pyrophosphatase; Pyrophosphatase that catalyzes the hydrolysis of nucleoside triphosphates to their monophosphate derivatives, with a high preference for the non-canonical purine nucleotides XTP (xanthosine triphosphate), dITP (deoxyinosine triphosphate) and ITP. Seems to function as a house-cleaning enzyme that removes non-canonical purine nucleotides from the nucleotide pool, thus preventing their incorporation into DNA/RNA and avoiding chromosomal lesions. Belongs to the HAM1 NTPase family. | 0.778 |
OAP86727.1 | rph | A4H34_06320 | A4H34_06325 | MBL fold metallo-hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Ribonuclease PH; Phosphorolytic 3'-5' exoribonuclease that plays an important role in tRNA 3'-end maturation. Removes nucleotide residues following the 3'-CCA terminus of tRNAs; can also add nucleotides to the ends of RNA molecules by using nucleoside diphosphates as substrates, but this may not be physiologically important. Probably plays a role in initiation of 16S rRNA degradation (leading to ribosome degradation) during starvation. | 0.901 |
OAP86729.1 | OAP85981.1 | A4H34_06330 | A4H34_01995 | Non-canonical purine NTP pyrophosphatase; Pyrophosphatase that catalyzes the hydrolysis of nucleoside triphosphates to their monophosphate derivatives, with a high preference for the non-canonical purine nucleotides XTP (xanthosine triphosphate), dITP (deoxyinosine triphosphate) and ITP. Seems to function as a house-cleaning enzyme that removes non-canonical purine nucleotides from the nucleotide pool, thus preventing their incorporation into DNA/RNA and avoiding chromosomal lesions. Belongs to the HAM1 NTPase family. | Hypothetical protein; RNaseP catalyzes the removal of the 5'-leader sequence from pre-tRNA to produce the mature 5'-terminus. It can also cleave other RNA substrates such as 4.5S RNA. The protein component plays an auxiliary but essential role in vivo by binding to the 5'-leader sequence and broadening the substrate specificity of the ribozyme. | 0.531 |
OAP86729.1 | OAP86727.1 | A4H34_06330 | A4H34_06320 | Non-canonical purine NTP pyrophosphatase; Pyrophosphatase that catalyzes the hydrolysis of nucleoside triphosphates to their monophosphate derivatives, with a high preference for the non-canonical purine nucleotides XTP (xanthosine triphosphate), dITP (deoxyinosine triphosphate) and ITP. Seems to function as a house-cleaning enzyme that removes non-canonical purine nucleotides from the nucleotide pool, thus preventing their incorporation into DNA/RNA and avoiding chromosomal lesions. Belongs to the HAM1 NTPase family. | MBL fold metallo-hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.778 |
OAP86729.1 | pnp | A4H34_06330 | A4H34_09570 | Non-canonical purine NTP pyrophosphatase; Pyrophosphatase that catalyzes the hydrolysis of nucleoside triphosphates to their monophosphate derivatives, with a high preference for the non-canonical purine nucleotides XTP (xanthosine triphosphate), dITP (deoxyinosine triphosphate) and ITP. Seems to function as a house-cleaning enzyme that removes non-canonical purine nucleotides from the nucleotide pool, thus preventing their incorporation into DNA/RNA and avoiding chromosomal lesions. Belongs to the HAM1 NTPase family. | Polyribonucleotide nucleotidyltransferase; Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction. | 0.522 |
OAP86729.1 | rph | A4H34_06330 | A4H34_06325 | Non-canonical purine NTP pyrophosphatase; Pyrophosphatase that catalyzes the hydrolysis of nucleoside triphosphates to their monophosphate derivatives, with a high preference for the non-canonical purine nucleotides XTP (xanthosine triphosphate), dITP (deoxyinosine triphosphate) and ITP. Seems to function as a house-cleaning enzyme that removes non-canonical purine nucleotides from the nucleotide pool, thus preventing their incorporation into DNA/RNA and avoiding chromosomal lesions. Belongs to the HAM1 NTPase family. | Ribonuclease PH; Phosphorolytic 3'-5' exoribonuclease that plays an important role in tRNA 3'-end maturation. Removes nucleotide residues following the 3'-CCA terminus of tRNAs; can also add nucleotides to the ends of RNA molecules by using nucleoside diphosphates as substrates, but this may not be physiologically important. Probably plays a role in initiation of 16S rRNA degradation (leading to ribosome degradation) during starvation. | 0.992 |
OAP87058.1 | OAP85185.1 | A4H34_02525 | A4H34_08720 | ATP-dependent helicase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.985 |