node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ANU53014.1 | ANU54057.1 | A4V00_02680 | A4V00_08460 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Molecular chaperone DnaJ; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.896 |
ANU53014.1 | ANU54305.1 | A4V00_02680 | A4V00_09880 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | 0.831 |
ANU53014.1 | ANU55157.1 | A4V00_02680 | A4V00_14685 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.963 |
ANU53014.1 | ANU55361.1 | A4V00_02680 | A4V00_15810 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.846 |
ANU53014.1 | dnaJ | A4V00_02680 | A4V00_00230 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.896 |
ANU53102.1 | ANU54057.1 | A4V00_03165 | A4V00_08460 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Molecular chaperone DnaJ; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.896 |
ANU53102.1 | ANU54305.1 | A4V00_03165 | A4V00_09880 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | 0.831 |
ANU53102.1 | ANU55157.1 | A4V00_03165 | A4V00_14685 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.963 |
ANU53102.1 | ANU55361.1 | A4V00_03165 | A4V00_15810 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.846 |
ANU53102.1 | dnaJ | A4V00_03165 | A4V00_00230 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.896 |
ANU54057.1 | ANU53014.1 | A4V00_08460 | A4V00_02680 | Molecular chaperone DnaJ; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.896 |
ANU54057.1 | ANU53102.1 | A4V00_08460 | A4V00_03165 | Molecular chaperone DnaJ; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.896 |
ANU54057.1 | ANU54305.1 | A4V00_08460 | A4V00_09880 | Molecular chaperone DnaJ; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | 0.743 |
ANU54057.1 | ANU55157.1 | A4V00_08460 | A4V00_14685 | Molecular chaperone DnaJ; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.879 |
ANU54057.1 | ANU55361.1 | A4V00_08460 | A4V00_15810 | Molecular chaperone DnaJ; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.843 |
ANU54057.1 | dnaK | A4V00_08460 | A4V00_00235 | Molecular chaperone DnaJ; Derived by automated computational analysis using gene prediction method: Protein Homology. | Molecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. | 0.980 |
ANU54139.1 | ANU55157.1 | A4V00_08915 | A4V00_14685 | DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...] | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.915 |
ANU54139.1 | ANU55361.1 | A4V00_08915 | A4V00_15810 | DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...] | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.868 |
ANU54139.1 | dinB | A4V00_08915 | A4V00_02275 | DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...] | DNA polymerase IV; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII. | 0.988 |
ANU54305.1 | ANU53014.1 | A4V00_09880 | A4V00_02680 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.831 |