STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
OIJ26214.1ATP-dependent DNA helicase RecQ; Derived by automated computational analysis using gene prediction method: Protein Homology. (605 aa)    
Predicted Functional Partners:
topA
DNA topoisomerase I; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA- (5'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus removing DNA supe [...]
 
 0.963
recA
Recombinase RecA; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family.
  
 0.954
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family.
  
 0.928
OIJ23849.1
DNA helicase UvrD; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the helicase family. UvrD subfamily.
  
 0.917
OIJ28101.1
ATP-binding cassette family protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.903
OIJ28182.1
Flap endonuclease; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.882
OIJ27731.1
5'-3' exonuclease; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.882
sbcD
Exonuclease SbcCD subunit D; SbcCD cleaves DNA hairpin structures. These structures can inhibit DNA replication and are intermediates in certain DNA recombination reactions. The complex acts as a 3'->5' double strand exonuclease that can open hairpins. It also has a 5' single-strand endonuclease activity; Belongs to the SbcD family.
   
 0.878
OIJ27501.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
   
 0.878
OIJ27087.1
ATP-dependent DNA helicase PcrA; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.850
Your Current Organism:
Nocardioides luteus
NCBI taxonomy Id: 1844
Other names: ATCC 43052, CCUG 37986, CIP 103450, DSM 43366, IFO 14491, IMET 7830, JCM 3358, KCTC 9575, LMG 16209, LMG:16209, N. luteus, NBRC 14491
Server load: low (12%) [HD]