node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
OIJ25461.1 | OIJ25464.1 | UG56_017850 | UG56_017865 | 16S rRNA (uracil(1498)-N(3))-methyltransferase; Specifically methylates the N3 position of the uracil ring of uridine 1498 (m3U1498) in 16S rRNA. Acts on the fully assembled 30S ribosomal subunit. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | 0.446 |
OIJ25461.1 | OIJ25465.1 | UG56_017850 | UG56_017870 | 16S rRNA (uracil(1498)-N(3))-methyltransferase; Specifically methylates the N3 position of the uracil ring of uridine 1498 (m3U1498) in 16S rRNA. Acts on the fully assembled 30S ribosomal subunit. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.553 |
OIJ25461.1 | dnaJ | UG56_017850 | UG56_017855 | 16S rRNA (uracil(1498)-N(3))-methyltransferase; Specifically methylates the N3 position of the uracil ring of uridine 1498 (m3U1498) in 16S rRNA. Acts on the fully assembled 30S ribosomal subunit. | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.907 |
OIJ25461.1 | hrcA | UG56_017850 | UG56_017860 | 16S rRNA (uracil(1498)-N(3))-methyltransferase; Specifically methylates the N3 position of the uracil ring of uridine 1498 (m3U1498) in 16S rRNA. Acts on the fully assembled 30S ribosomal subunit. | Heat-inducible transcriptional repressor HrcA; Negative regulator of class I heat shock genes (grpE-dnaK- dnaJ and groELS operons). Prevents heat-shock induction of these operons. | 0.915 |
OIJ25464.1 | OIJ25461.1 | UG56_017865 | UG56_017850 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | 16S rRNA (uracil(1498)-N(3))-methyltransferase; Specifically methylates the N3 position of the uracil ring of uridine 1498 (m3U1498) in 16S rRNA. Acts on the fully assembled 30S ribosomal subunit. | 0.446 |
OIJ25464.1 | OIJ25465.1 | UG56_017865 | UG56_017870 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.714 |
OIJ25464.1 | dnaJ | UG56_017865 | UG56_017855 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.467 |
OIJ25464.1 | hrcA | UG56_017865 | UG56_017860 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | Heat-inducible transcriptional repressor HrcA; Negative regulator of class I heat shock genes (grpE-dnaK- dnaJ and groELS operons). Prevents heat-shock induction of these operons. | 0.496 |
OIJ25465.1 | OIJ25461.1 | UG56_017870 | UG56_017850 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 16S rRNA (uracil(1498)-N(3))-methyltransferase; Specifically methylates the N3 position of the uracil ring of uridine 1498 (m3U1498) in 16S rRNA. Acts on the fully assembled 30S ribosomal subunit. | 0.553 |
OIJ25465.1 | OIJ25464.1 | UG56_017870 | UG56_017865 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | 0.714 |
OIJ25465.1 | dnaJ | UG56_017870 | UG56_017855 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.502 |
OIJ25465.1 | hrcA | UG56_017870 | UG56_017860 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Heat-inducible transcriptional repressor HrcA; Negative regulator of class I heat shock genes (grpE-dnaK- dnaJ and groELS operons). Prevents heat-shock induction of these operons. | 0.587 |
dnaJ | OIJ25461.1 | UG56_017855 | UG56_017850 | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 16S rRNA (uracil(1498)-N(3))-methyltransferase; Specifically methylates the N3 position of the uracil ring of uridine 1498 (m3U1498) in 16S rRNA. Acts on the fully assembled 30S ribosomal subunit. | 0.907 |
dnaJ | OIJ25464.1 | UG56_017855 | UG56_017865 | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | 0.467 |
dnaJ | OIJ25465.1 | UG56_017855 | UG56_017870 | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.502 |
dnaJ | hrcA | UG56_017855 | UG56_017860 | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Heat-inducible transcriptional repressor HrcA; Negative regulator of class I heat shock genes (grpE-dnaK- dnaJ and groELS operons). Prevents heat-shock induction of these operons. | 0.957 |
hrcA | OIJ25461.1 | UG56_017860 | UG56_017850 | Heat-inducible transcriptional repressor HrcA; Negative regulator of class I heat shock genes (grpE-dnaK- dnaJ and groELS operons). Prevents heat-shock induction of these operons. | 16S rRNA (uracil(1498)-N(3))-methyltransferase; Specifically methylates the N3 position of the uracil ring of uridine 1498 (m3U1498) in 16S rRNA. Acts on the fully assembled 30S ribosomal subunit. | 0.915 |
hrcA | OIJ25464.1 | UG56_017860 | UG56_017865 | Heat-inducible transcriptional repressor HrcA; Negative regulator of class I heat shock genes (grpE-dnaK- dnaJ and groELS operons). Prevents heat-shock induction of these operons. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. | 0.496 |
hrcA | OIJ25465.1 | UG56_017860 | UG56_017870 | Heat-inducible transcriptional repressor HrcA; Negative regulator of class I heat shock genes (grpE-dnaK- dnaJ and groELS operons). Prevents heat-shock induction of these operons. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.587 |
hrcA | dnaJ | UG56_017860 | UG56_017855 | Heat-inducible transcriptional repressor HrcA; Negative regulator of class I heat shock genes (grpE-dnaK- dnaJ and groELS operons). Prevents heat-shock induction of these operons. | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.957 |