STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
purSPhosphoribosylformylglycinamidine synthase subunit PurS; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought [...] (86 aa)    
Predicted Functional Partners:
purQ
Phosphoribosylformylglycinamidine synthase 1; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist i [...]
 
 0.999
purL
Phosphoribosylformylglycinamidine synthase 2; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist i [...]
 
 0.999
purM
Phosphoribosylformylglycinamidine cyclo-ligase; Bacteria and source DNA available from Institute of Veterinary Bacteriology, University Bern.
  
 0.998
purN
Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate.
  
 
 0.997
purE
N5-carboxyaminoimidazole ribonucleotide mutase; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR).
  
  
 0.992
purC
Phosphoribosylaminoimidazole-succinocarboxamide synthase; Bacteria and source DNA available from Institute of Veterinary Bacteriology, University Bern; Belongs to the SAICAR synthetase family.
  
  
 0.984
purF
Amidophosphoribosyltransferase precursor; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine.
  
  
 0.983
purD
Phosphoribosylamine--glycine ligase; Bacteria and source DNA available from Institute of Veterinary Bacteriology, University Bern; Belongs to the GARS family.
  
 
 0.982
purK
N5-carboxyaminoimidazole ribonucleotide synthase; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR).
  
  
 0.978
purH
Bifunctional purine biosynthesis protein PurH; Bacteria and source DNA available from Institute of Veterinary Bacteriology, University Bern.
  
  
 0.977
Your Current Organism:
Macrococcus canis
NCBI taxonomy Id: 1855823
Other names: CCM 8748, CCOS 969, CCOS:969, CCUG 68920, DSM 101690, M. canis, Macrococcus canis Gobeli Brawand et al. 2017, Macrococcus sp. KM45013, strain KM 45013
Server load: low (28%) [HD]