STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ARQ06580.1Putative cell-wall binding lipoprotein; Bacteria and source DNA available from Institute of Veterinary Bacteriology, University Bern. (210 aa)    
Predicted Functional Partners:
pdhA
Pyruvate dehydrogenase E1 component subunit alpha; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). It contains multiple copies of three enzymatic components: pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2) and lipoamide dehydrogenase (E3).
  
    0.647
pdhB
Pyruvate dehydrogenase E1 component subunit beta; Bacteria and source DNA available from Institute of Veterinary Bacteriology, University Bern.
       0.642
def
Peptide deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions.
       0.588
recJ
Single-stranded-DNA-specific exonuclease RecJ; Bacteria and source DNA available from Institute of Veterinary Bacteriology, University Bern.
  
  
 0.494
recA
Recombinase A; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family.
  
  
 0.482
ARQ07317.1
Hypothetical protein; Bacteria and source DNA available from Institute of Veterinary Bacteriology, University Bern.
  
  
 0.482
lexA
LexA repressor; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair.
   
  
 0.472
ARQ07328.1
LexA repressor; Bacteria and source DNA available from Institute of Veterinary Bacteriology, University Bern.
   
  
 0.472
topB
DNA topoisomerase 3; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA- (5'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus removing DNA supe [...]
  
  
 0.462
topA
DNA topoisomerase 1; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA- (5'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus removing DNA supe [...]
  
  
 0.462
Your Current Organism:
Macrococcus canis
NCBI taxonomy Id: 1855823
Other names: CCM 8748, CCOS 969, CCOS:969, CCUG 68920, DSM 101690, M. canis, Macrococcus canis Gobeli Brawand et al. 2017, Macrococcus sp. KM45013, strain KM 45013
Server load: low (12%) [HD]