STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ntpAV-type ATP synthase subunit A; Produces ATP from ADP in the presence of a proton gradient across the membrane. The V-type alpha chain is a catalytic subunit. Belongs to the ATPase alpha/beta chains family. (611 aa)    
Predicted Functional Partners:
AQQ04056.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.999
ntpK
V-type ATP synthase subunit K; Produces ATP from ADP in the presence of a proton gradient across the membrane; the K subunit is a nonenzymatic component which binds the dimeric form by interacting with the G and E subunits; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.999
AQQ04058.1
V-type ATP synthase subunit I; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.999
AQQ04059.1
V-type ATP synthase subunit D; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.999
ntpB
V-type ATP synthase subunit B; Produces ATP from ADP in the presence of a proton gradient across the membrane; the B subunit is part of the catalytic core of the ATP synthase complex; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
0.998
atpE
ATP F0F1 synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
  
 0.988
ppa
Inorganic pyrophosphatase; Catalyzes the hydrolysis of inorganic pyrophosphate (PPi) forming two phosphate ions.
   
 
 0.936
icd
Isocitrate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the isocitrate and isopropylmalate dehydrogenases family.
   
  
 0.813
AQQ04055.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
       0.798
rpsE
30S ribosomal protein S5; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body. Belongs to the universal ribosomal protein uS5 family.
   
   0.646
Your Current Organism:
Labrenzia aggregata
NCBI taxonomy Id: 187304
Other names: ATCC 25650, Agrobacterium aggregatum, DSM 13394, IAM 12614, JCM 20685, L. aggregata, LMG 122, LMG:122, NBRC 16684, NCIMB 2208, Stappia aggregata, strain B1
Server load: low (14%) [HD]