STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
APR67199.1beta-ketoacyl-ACP reductase; Catalyzes the conversion of 3-hydroxyacyl-CoA to 3-oxyacyl-CoA; Derived by automated computational analysis using gene prediction method: Protein Homology. (248 aa)    
Predicted Functional Partners:
APR66653.1
Class I poly(R)-hydroxyalkanoic acid synthase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.950
APR67256.1
3-hydroxybutyryl-CoA dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.950
FadB
Multifunctional fatty acid oxidation complex subunit alpha; Involved in the aerobic and anaerobic degradation of long- chain fatty acids via beta-oxidation cycle. Catalyzes the formation of 3-oxoacyl-CoA from enoyl-CoA via L-3-hydroxyacyl-CoA. It can also use D-3-hydroxyacyl-CoA and cis-3-enoyl-CoA as substrate. In the C-terminal section; belongs to the 3-hydroxyacyl-CoA dehydrogenase family.
  
 0.933
APR68036.1
3-hydroxyacyl-CoA dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.933
APR66254.1
3-hydroxyacyl-CoA dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 0.909
APR67582.1
acetyl-CoA acetyltransferase; Catalyzes the synthesis of acetoacetyl coenzyme A from two molecules of acetyl coenzyme A. It can also act as a thiolase, catalyzing the reverse reaction and generating two-carbon units from the four-carbon product of fatty acid oxidation; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family.
 
 0.909
APR68037.1
acetyl-CoA acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family.
 
 0.909
APR68114.1
acetyl-CoA acetyltransferase; Catalyzes the synthesis of acetoacetyl coenzyme A from two molecules of acetyl coenzyme A. It can also act as a thiolase, catalyzing the reverse reaction and generating two-carbon units from the four-carbon product of fatty acid oxidation; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family.
 
 0.909
APR68629.1
acetyl-CoA acetyltransferase; Catalyzes the synthesis of acetoacetyl coenzyme A from two molecules of acetyl coenzyme A. It can also act as a thiolase, catalyzing the reverse reaction and generating two-carbon units from the four-carbon product of fatty acid oxidation; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family.
 
 0.909
APR67220.1
Malonyl CoA-acyl carrier protein transacylase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.827
Your Current Organism:
Thalassolituus oleivorans
NCBI taxonomy Id: 187493
Other names: DSM 14913, LMG 21420, LMG:21420, T. oleivorans, Thalassolituus oleivorans Yakimov et al. 2004, strain MIL-1
Server load: low (10%) [HD]