STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
hfqRNA chaperone Hfq; RNA chaperone that binds small regulatory RNA (sRNAs) and mRNAs to facilitate mRNA translational regulation in response to envelope stress, environmental stress and changes in metabolite concentrations. Also binds with high specificity to tRNAs. Belongs to the Hfq family. (116 aa)    
Predicted Functional Partners:
pnp
Polyribonucleotide nucleotidyltransferase; Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction.
    
 
 0.863
OJV43047.1
Catalase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 
 0.839
OJV43281.1
Catalase; Has an organic peroxide-dependent peroxidase activity. Belongs to the catalase family.
    
 
 0.839
clpX
ATP-dependent protease ATP-binding subunit ClpX; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP.
   
  
 0.785
miaA
tRNA (adenosine(37)-N6)-dimethylallyltransferase MiaA; Catalyzes the transfer of a dimethylallyl group onto the adenine at position 37 in tRNAs that read codons beginning with uridine, leading to the formation of N6-(dimethylallyl)adenosine (i(6)A); Belongs to the IPP transferase family.
  
  
 0.660
OJV43659.1
Phosphohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 
 0.641
OJV41632.1
Polynucleotide adenylyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the tRNA nucleotidyltransferase/poly(A) polymerase family.
    
 
 0.641
glmU
UDP-N-acetylglucosamine diphosphorylase/glucosamine-1-phosphate N-acetyltransferase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain.
  
   
 0.562
rnr
Ribonuclease R; 3'-5' exoribonuclease that releases 5'-nucleoside monophosphates and is involved in maturation of structured RNAs.
 
 
 
 0.557
rho
Transcription termination factor Rho; Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho's RNA- dependent ATPase activity, and release of the mRNA from the DNA template.
   
 
 0.519
Your Current Organism:
Acidobacteriales bacterium 5955
NCBI taxonomy Id: 1895690
Other names: A. bacterium 59-55, Acidobacteriales bacterium 59-55
Server load: low (14%) [HD]