STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
OJV41449.1Cytochrome c oxidase subunit I; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heme-copper respiratory oxidase family. (577 aa)    
Predicted Functional Partners:
OJV44474.1
Cytochrome c oxidase subunit II; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B).
 0.999
OJV39915.1
Cytochrome c oxidase subunit II; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B).
 0.999
OJV39917.1
Heme-copper oxidase subunit III; Derived by automated computational analysis using gene prediction method: Protein Homology.
 0.996
OJV39920.1
Cytochrome B6; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.996
OJV41448.1
Heme-copper oxidase subunit III; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.994
OJV41450.1
Cytochrome C oxidase subunit II; Derived by automated computational analysis using gene prediction method: Protein Homology.
 0.994
OJV44473.1
Cytochrome oxidase subunit III; Derived by automated computational analysis using gene prediction method: Protein Homology.
 0.992
OJV39522.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
 
 0.980
OJV39465.1
NADH:ubiquinone oxidoreductase subunit M; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.977
nuoH
NADH-quinone oxidoreductase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone.
  
 0.975
Your Current Organism:
Acidobacteriales bacterium 5955
NCBI taxonomy Id: 1895690
Other names: A. bacterium 59-55, Acidobacteriales bacterium 59-55
Server load: low (6%) [HD]