node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
OJY16976.1 | OJY25006.1 | BGO98_12450 | BGO98_08330 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.806 |
OJY16976.1 | groL | BGO98_12450 | BGO98_20275 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Chaperonin GroL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.739 |
OJY16976.1 | groL-2 | BGO98_12450 | BGO98_29830 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Chaperonin GroL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.742 |
OJY16976.1 | groS | BGO98_12450 | BGO98_20280 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Co-chaperone GroES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter. | 0.590 |
OJY16976.1 | groS-2 | BGO98_12450 | BGO98_29825 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Co-chaperone GroES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter. | 0.586 |
OJY16976.1 | grpE | BGO98_12450 | BGO98_34945 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Nucleotide exchange factor GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds [...] | 0.940 |
OJY16976.1 | htpG | BGO98_12450 | BGO98_14625 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Molecular chaperone HtpG; Molecular chaperone. Has ATPase activity. | 0.844 |
OJY25006.1 | OJY16976.1 | BGO98_08330 | BGO98_12450 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.806 |
OJY25006.1 | dnaJ | BGO98_08330 | BGO98_16375 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.784 |
OJY25006.1 | dnaJ-2 | BGO98_08330 | BGO98_35345 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.789 |
OJY25006.1 | groL | BGO98_08330 | BGO98_20275 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Chaperonin GroL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.774 |
OJY25006.1 | groL-2 | BGO98_08330 | BGO98_29830 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Chaperonin GroL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.774 |
OJY25006.1 | groS | BGO98_08330 | BGO98_20280 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Co-chaperone GroES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter. | 0.751 |
OJY25006.1 | groS-2 | BGO98_08330 | BGO98_29825 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Co-chaperone GroES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter. | 0.751 |
OJY25006.1 | grpE | BGO98_08330 | BGO98_34945 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Nucleotide exchange factor GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds [...] | 0.914 |
OJY25006.1 | hscB | BGO98_08330 | BGO98_19830 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Fe-S protein assembly co-chaperone HscB; Co-chaperone involved in the maturation of iron-sulfur cluster-containing proteins. Seems to help targeting proteins to be folded toward HscA; Belongs to the HscB family. | 0.779 |
OJY25006.1 | htpG | BGO98_08330 | BGO98_14625 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Molecular chaperone HtpG; Molecular chaperone. Has ATPase activity. | 0.900 |
dnaJ | OJY25006.1 | BGO98_16375 | BGO98_08330 | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.784 |
dnaJ | groL | BGO98_16375 | BGO98_20275 | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Chaperonin GroL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.823 |
dnaJ | groL-2 | BGO98_16375 | BGO98_29830 | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Chaperonin GroL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.821 |