STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
OJY17210.1Hypothetical protein; Transfers and isomerizes the ribose moiety from AdoMet to the 7-aminomethyl group of 7-deazaguanine (preQ1-tRNA) to give epoxyqueuosine (oQ-tRNA). (379 aa)    
Predicted Functional Partners:
tgt
tRNA guanosine(34) transglycosylase Tgt; Catalyzes the base-exchange of a guanine (G) residue with the queuine precursor 7-aminomethyl-7-deazaguanine (PreQ1) at position 34 (anticodon wobble position) in tRNAs with GU(N) anticodons (tRNA-Asp, - Asn, -His and -Tyr). Catalysis occurs through a double-displacement mechanism. The nucleophile active site attacks the C1' of nucleotide 34 to detach the guanine base from the RNA, forming a covalent enzyme-RNA intermediate. The proton acceptor active site deprotonates the incoming PreQ1, allowing a nucleophilic attack on the C1' of the ribose t [...]
 
 
 0.989
OJY31191.1
tRNA epoxyqueuosine(34) reductase QueG; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.890
OJY17211.1
Short-chain dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
     0.888
ruvB
Holliday junction DNA helicase RuvB; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing.
 
  
 0.761
OJY20510.1
DNA repair protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
  
  
 0.706
ruvA
Holliday junction DNA helicase RuvA; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. RuvA stimulates, in the presence of DNA, the weak ATPase activity of RuvB.
  
    0.705
OJY30817.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+; Belongs to the class I-like SAM-binding methyltransferase superfamily. RsmB/NOP family.
  
  
 0.632
OJY17208.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
       0.586
OJY17209.1
DNA repair exonuclease; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.586
folD
Bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate.
  
    0.582
Your Current Organism:
Myxococcales bacterium 6820
NCBI taxonomy Id: 1895795
Other names: M. bacterium 68-20, Myxococcales bacterium 68-20
Server load: low (28%) [HD]