node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
OIR43470.1 | fhs | BJP07_07170 | BJP07_04645 | 5-formyltetrahydrofolate cyclo-ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5-formyltetrahydrofolate cyclo-ligase family. | Formate--tetrahydrofolate ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | 0.714 |
OIR43470.1 | fmt | BJP07_07170 | BJP07_04340 | 5-formyltetrahydrofolate cyclo-ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5-formyltetrahydrofolate cyclo-ligase family. | methionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus; Belongs to the Fmt family. | 0.485 |
OIR43470.1 | folD | BJP07_07170 | BJP07_09870 | 5-formyltetrahydrofolate cyclo-ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5-formyltetrahydrofolate cyclo-ligase family. | Bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | 0.927 |
OIR43470.1 | glyA | BJP07_07170 | BJP07_07910 | 5-formyltetrahydrofolate cyclo-ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5-formyltetrahydrofolate cyclo-ligase family. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.647 |
OIR43470.1 | purH | BJP07_07170 | BJP07_07105 | 5-formyltetrahydrofolate cyclo-ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5-formyltetrahydrofolate cyclo-ligase family. | Bifunctional phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.444 |
OIR43470.1 | purN | BJP07_07170 | BJP07_07100 | 5-formyltetrahydrofolate cyclo-ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5-formyltetrahydrofolate cyclo-ligase family. | Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. | 0.913 |
OIR45342.1 | fhs | BJP07_02900 | BJP07_04645 | Glycine dehydrogenase (aminomethyl-transferring); Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GcvP family. | Formate--tetrahydrofolate ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | 0.900 |
OIR45342.1 | folD | BJP07_02900 | BJP07_09870 | Glycine dehydrogenase (aminomethyl-transferring); Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GcvP family. | Bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | 0.965 |
OIR45342.1 | gcvH | BJP07_02900 | BJP07_02890 | Glycine dehydrogenase (aminomethyl-transferring); Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GcvP family. | Glycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. | 0.999 |
OIR45342.1 | gcvT | BJP07_02900 | BJP07_02895 | Glycine dehydrogenase (aminomethyl-transferring); Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GcvP family. | Glycine cleavage system protein T; The glycine cleavage system catalyzes the degradation of glycine. | 0.999 |
OIR45342.1 | glyA | BJP07_02900 | BJP07_07910 | Glycine dehydrogenase (aminomethyl-transferring); Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GcvP family. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.998 |
OIR45342.1 | purH | BJP07_02900 | BJP07_07105 | Glycine dehydrogenase (aminomethyl-transferring); Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GcvP family. | Bifunctional phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.727 |
OIR45342.1 | thyA | BJP07_02900 | BJP07_07040 | Glycine dehydrogenase (aminomethyl-transferring); Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GcvP family. | Thymidylate synthase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by- product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis. | 0.929 |
fhs | OIR43470.1 | BJP07_04645 | BJP07_07170 | Formate--tetrahydrofolate ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | 5-formyltetrahydrofolate cyclo-ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5-formyltetrahydrofolate cyclo-ligase family. | 0.714 |
fhs | OIR45342.1 | BJP07_04645 | BJP07_02900 | Formate--tetrahydrofolate ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | Glycine dehydrogenase (aminomethyl-transferring); Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GcvP family. | 0.900 |
fhs | fmt | BJP07_04645 | BJP07_04340 | Formate--tetrahydrofolate ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | methionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus; Belongs to the Fmt family. | 0.589 |
fhs | folD | BJP07_04645 | BJP07_09870 | Formate--tetrahydrofolate ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | Bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | 0.994 |
fhs | gcvT | BJP07_04645 | BJP07_02895 | Formate--tetrahydrofolate ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | Glycine cleavage system protein T; The glycine cleavage system catalyzes the degradation of glycine. | 0.941 |
fhs | glyA | BJP07_04645 | BJP07_07910 | Formate--tetrahydrofolate ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.972 |
fhs | purH | BJP07_04645 | BJP07_07105 | Formate--tetrahydrofolate ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | Bifunctional phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.980 |