STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
hisZATP phosphoribosyltransferase regulatory subunit; Required for the first step of histidine biosynthesis. May allow the feedback regulation of ATP phosphoribosyltransferase activity by histidine. (416 aa)    
Predicted Functional Partners:
hisG
ATP phosphoribosyltransferase; Catalyzes the condensation of ATP and 5-phosphoribose 1- diphosphate to form N'-(5'-phosphoribosyl)-ATP (PR-ATP). Has a crucial role in the pathway because the rate of histidine biosynthesis seems to be controlled primarily by regulation of HisG enzymatic activity. Belongs to the ATP phosphoribosyltransferase family. Short subfamily.
 0.999
hisI
Bifunctional phosphoribosyl-AMP cyclohydrolase/phosphoribosyl-ATP diphosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology; In the N-terminal section; belongs to the PRA-CH family.
 
 
 0.999
hisD
Histidinol dehydrogenase; Catalyzes the sequential NAD-dependent oxidations of L- histidinol to L-histidinaldehyde and then to L-histidine.
  
 
 0.967
hisB
Imidazoleglycerol-phosphate dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.963
hisA
1-(5-phosphoribosyl)-5-[(5- phosphoribosylamino)methylideneamino]imidazole-4- carboxamide isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.959
hisF
Imidazole glycerol phosphate synthase subunit HisF; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisF subunit catalyzes the cyclization activity that produces IGP and AICAR from PRFAR using the ammonia provided by the HisH subunit.
  
 
 0.894
OUC13627.1
Imidazole glycerol phosphate synthase subunit HisF; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisF subunit catalyzes the cyclization activity that produces IGP and AICAR from PRFAR using the ammonia provided by the HisH subunit.
  
 
 0.894
OUC13644.1
LPS biosynthesis protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.894
prs
Phosphoribosylpyrophosphate synthetase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily.
    
 0.884
OUC12941.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.794
Your Current Organism:
Alkalinema sp. CACIAM
NCBI taxonomy Id: 1934309
Other names: A. sp. CACIAM 70d, Alkalinema sp. CACIAM 70d
Server load: low (28%) [HD]