STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
clpPATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. (210 aa)    
Predicted Functional Partners:
clpP-2
ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family.
 
 
0.999
clpX
ATP-dependent Clp protease ATP-binding subunit ClpX; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP.
 0.998
SAMN03159343_0633
ATP-dependent Clp protease ATP-binding subunit ClpC; Belongs to the ClpA/ClpB family.
  
 
 0.963
clpB
Chaperone protein ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family.
  
 
 0.962
SAMN03159343_2092
Clp amino terminal domain-containing protein, pathogenicity island component.
   
 
 0.945
SAMN03159343_3763
Clp amino terminal domain-containing protein, pathogenicity island component.
   
 
 0.945
dnaK
Chaperone protein DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family.
   
 
 0.883
tig
Trigger factor; Involved in protein export. Acts as a chaperone by maintaining the newly synthesized protein in an open conformation. Functions as a peptidyl-prolyl cis-trans isomerase; Belongs to the FKBP-type PPIase family. Tig subfamily.
  
 0.817
groS
10 kDa chaperonin; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter.
 
 
 0.810
grpE
Protein GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent i [...]
   
 
 0.803
Your Current Organism:
Klenkia marina
NCBI taxonomy Id: 1960309
Other names: Actinobacteria bacterium DSM 45722, CCTCC AB 2012057, CCTCC:AB:2012057, DSM 45722, Geodermatophilus sp. YIM M1316, K. marina, Klenkia marina Montero-Calasanz et al. 2018, YIM M13156
Server load: low (20%) [HD]