STRINGSTRING
ruvB protein (Nocardioides sp. JS614) - STRING interaction network
"ruvB" - Holliday junction DNA helicase RuvB in Nocardioides sp. JS614
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ruvBHolliday junction DNA helicase RuvB; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing (360 aa)    
Predicted Functional Partners:
ruvA
Holliday junction DNA helicase subunit RuvA; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. RuvA stimulates, in the presence of DNA, the weak ATPase activity of RuvB (200 aa)
 
  0.999
ruvC
Holliday junction endonuclease RuvC; Nuclease that resolves Holliday junction intermediates in genetic recombination. Cleaves the cruciform structure in supercoiled DNA by nicking to strands with the same polarity at sites symmetrically opposed at the junction in the homologous arms and leaves a 5’-terminal phosphate and a 3’-terminal hydroxyl group (177 aa)
 
 
  0.990
clpB
ATPase; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE (866 aa)
 
 
  0.823
Noca_0466
ATPase (861 aa)
 
 
  0.812
secF
Protein translocase subunit secF; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA (412 aa)
 
   
  0.794
mfd
Transcription-repair coupling factor; Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site (1224 aa)
   
   
  0.771
secD
Preprotein translocase subunit SecD; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA (564 aa)
 
   
  0.763
recR
Recombination protein RecR; May play a role in DNA repair. It seems to be involved in an RecBC-independent recombinational process of DNA repair. It may act with RecF and RecO (199 aa)
 
   
  0.746
Noca_3006
DNA polymerase I (889 aa)
 
   
  0.741
Noca_2482
DNA repair protein RecN; May be involved in recombinational repair of damaged DNA (584 aa)
 
   
  0.736
Your Current Organism:
Nocardioides sp. JS614
NCBI taxonomy Id: 196162
Other names: N. sp. JS614, Nocardioides, Nocardioides JS614, Nocardioides sp. JS614
Server load: low (9%) [HD]