STRINGSTRING
Noca_4334 protein (Nocardioides sp. JS614) - STRING interaction network
"Noca_4334" - Hypothetical protein in Nocardioides sp. JS614
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Noca_4334Hypothetical protein (167 aa)    
Predicted Functional Partners:
purS
Phosphoribosylformylglycinamidine synthase PurS; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP-dependent manner. PurS interacts with PurQ and PurL and is thought to assist [...] (85 aa)
              0.643
purQ
Phosphoribosylformylglycinamidine synthase I; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP-dependent manner. PurS interacts with PurQ and PurL and is thought to assist in [...] (222 aa)
              0.643
Noca_4331
Membrane protein (148 aa)
              0.643
Noca_3704
Hypothetical protein (366 aa)
   
        0.619
Noca_1924
ANTAR domain-containing protein (248 aa)
   
          0.597
Noca_4011
Hypothetical protein (401 aa)
   
          0.541
Noca_0465
Hypothetical protein (108 aa)
   
          0.461
Noca_3070
Hypothetical protein (209 aa)
   
          0.430
Noca_2630
Hypothetical protein (282 aa)
   
          0.430
Noca_4185
Lipopolysaccharide biosynthesis protein (473 aa)
   
        0.425
Your Current Organism:
Nocardioides sp. JS614
NCBI taxonomy Id: 196162
Other names: N. sp. JS614, Nocardioides, Nocardioides JS614, Nocardioides sp. JS614
Server load: low (18%) [HD]