STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
hslVHslU--HslV peptidase proteolytic subunit; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery. (179 aa)    
Predicted Functional Partners:
hslU
HslU--HslV peptidase ATPase subunit; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis.
 0.999
grpE
Nucleotide exchange factor GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds [...]
  
  
 0.899
htpG
Molecular chaperone HtpG; Molecular chaperone. Has ATPase activity.
   
  
 0.885
xerC
Hypothetical protein; Site-specific tyrosine recombinase, which acts by catalyzing the cutting and rejoining of the recombining DNA molecules. The XerC- XerD complex is essential to convert dimers of the bacterial chromosome into monomers to permit their segregation at cell division. It also contributes to the segregational stability of plasmids.
  
  
 0.882
ORC34286.1
DNA protecting protein DprA; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
   0.833
lon
Endopeptidase La; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short- lived regulatory proteins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner.
   
  
 0.818
lon-2
Endopeptidase La; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short- lived regulatory proteins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner.
   
  
 0.818
ORC34278.1
Flagellar motor switch protein FliG; FliG is one of three proteins (FliG, FliN, FliM) that forms the rotor-mounted switch complex (C ring), located at the base of the basal body. This complex interacts with the CheY and CheZ chemotaxis proteins, in addition to contacting components of the motor that determine the direction of flagellar rotation.
   
   0.812
groS
Co-chaperone GroES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter.
   
  
 0.805
groS-2
Co-chaperone GroES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter.
   
  
 0.805
Your Current Organism:
Marispirochaeta aestuarii
NCBI taxonomy Id: 1963862
Other names: Candidatus Marispirochaeta sp. JC444, DSM 103365, KCTC 15554, M. aestuarii, Marispirochaeta aestuarii Shivani et al. 2017, Marispirochaeta sp. JC444, Spirochaeta sp. JC444, strain JC444
Server load: low (26%) [HD]