STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
fdaFructose-bisphosphate aldolase; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis; Belongs to the class II fructose-bisphosphate aldolase family. (344 aa)    
Predicted Functional Partners:
tpi
TRIOSEPHOSPHATE ISOMERASE; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family.
  
 
 0.997
gap
GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE; Catalyzes the oxidative phosphorylation of glyceraldehyde 3- phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NAD. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NAD to NADH. The reduced NADH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic phosphate to produce BPG.
  
 0.990
pgi
GLUCOSE-6-PHOSPHATE ISOMERASE.
  
 
 0.989
eno
ENOLASE (2-PHOSPHOGLYCERATE DEHYDRATASE; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis; Belongs to the enolase family.
  
 0.987
pfkA
6-PHOSPHOFRUCTOKINASE; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis; Belongs to the phosphofructokinase type A (PFKA) family. Mixed-substrate PFK group III subfamily.
 
 
 0.986
tal
TRANSALDOLASE; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway; Belongs to the transaldolase family. Type 2 subfamily.
  
 
 0.986
tkt
TRANSKETOLASE; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate.
  
 
 0.985
glpX
GLPX-LIKE PROTEIN; Catalyzes the hydrolysis of fructose 1,6-bisphosphate to fructose 6-phosphate. Is essential for growth on gluconeogenic carbon sources. Also displays a low activity toward glucose 6-phosphate, and fructose 6-phosphate, glycerol 3-phosphate, ribulose 1,5-bisphosphate and myo-inositol-monophosphate are not significant substrates. Belongs to the FBPase class 2 family.
  
 
 0.977
ptsF
SUGAR SPECIFIC PTS SYSTEM, FRUCTOSE/MANNITOL-SPECIFIC TRANSPORT PROTEIN.
  
 
 0.977
gapX
Similar to GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE.
  
 0.976
Your Current Organism:
Corynebacterium glutamicum
NCBI taxonomy Id: 196627
Other names: C. glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum str. ATCC 13032, Corynebacterium glutamicum strain ATCC 13032
Server load: low (28%) [HD]