node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ORJ61356.1 | clpB | B5V00_06905 | B5V00_15480 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP-dependent chaperone ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. | 0.984 |
ORJ61356.1 | dnaJ | B5V00_06905 | B5V00_12625 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.997 |
ORJ61356.1 | ftsH | B5V00_06905 | B5V00_03095 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Cell division protein FtsH; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins; Belongs to the AAA ATPase family. In the central section; belongs to the AAA ATPase family. | 0.593 |
ORJ61356.1 | groL | B5V00_06905 | B5V00_15405 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Chaperonin GroL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.954 |
ORJ61356.1 | groS | B5V00_06905 | B5V00_15410 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Co-chaperone GroES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter. | 0.925 |
ORJ61356.1 | hslU | B5V00_06905 | B5V00_12875 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | HslU--HslV peptidase ATPase subunit; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. | 0.775 |
ORJ61356.1 | hslV | B5V00_06905 | B5V00_12880 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | HslU--HslV peptidase proteolytic subunit; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery. | 0.612 |
ORJ61356.1 | lon | B5V00_06905 | B5V00_01975 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Endopeptidase La; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short- lived regulatory proteins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner. | 0.653 |
ORJ62851.1 | dnaJ | B5V00_01980 | B5V00_12625 | Peptidase M16; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the peptidase M16 family. | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.427 |
ORJ62851.1 | ftsH | B5V00_01980 | B5V00_03095 | Peptidase M16; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the peptidase M16 family. | Cell division protein FtsH; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins; Belongs to the AAA ATPase family. In the central section; belongs to the AAA ATPase family. | 0.698 |
ORJ62851.1 | lon | B5V00_01980 | B5V00_01975 | Peptidase M16; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the peptidase M16 family. | Endopeptidase La; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short- lived regulatory proteins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner. | 0.612 |
clpB | ORJ61356.1 | B5V00_15480 | B5V00_06905 | ATP-dependent chaperone ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.984 |
clpB | dnaJ | B5V00_15480 | B5V00_12625 | ATP-dependent chaperone ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.732 |
clpB | dnaK | B5V00_15480 | B5V00_12620 | ATP-dependent chaperone ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. | Molecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. | 0.996 |
clpB | ftsH | B5V00_15480 | B5V00_03095 | ATP-dependent chaperone ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. | Cell division protein FtsH; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins; Belongs to the AAA ATPase family. In the central section; belongs to the AAA ATPase family. | 0.522 |
clpB | groL | B5V00_15480 | B5V00_15405 | ATP-dependent chaperone ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. | Chaperonin GroL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.771 |
clpB | groS | B5V00_15480 | B5V00_15410 | ATP-dependent chaperone ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. | Co-chaperone GroES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter. | 0.845 |
clpB | hslU | B5V00_15480 | B5V00_12875 | ATP-dependent chaperone ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. | HslU--HslV peptidase ATPase subunit; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. | 0.584 |
clpB | hslV | B5V00_15480 | B5V00_12880 | ATP-dependent chaperone ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. | HslU--HslV peptidase proteolytic subunit; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery. | 0.495 |
clpB | lon | B5V00_15480 | B5V00_01975 | ATP-dependent chaperone ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. | Endopeptidase La; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short- lived regulatory proteins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner. | 0.705 |