STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
OKL42711.1Cytochrome c oxidase subunit II; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). (292 aa)    
Predicted Functional Partners:
OKL45521.1
Cytochrome B; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis.
 
 0.999
OKL42490.1
Cytochrome c oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B.
 0.999
ctaB
Protoheme IX farnesyltransferase; Converts heme B (protoheme IX) to heme O by substitution of the vinyl group on carbon 2 of heme B porphyrin ring with a hydroxyethyl farnesyl side group; Belongs to the UbiA prenyltransferase family. Protoheme IX farnesyltransferase subfamily.
 
 0.999
OKL42493.1
Cytochrome B562; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.999
OKL42657.1
Cytochrome C oxidase Cbb3; C-type cytochrome. Part of the cbb3-type cytochrome c oxidase complex.
  
 0.997
nuoH
NADH:ubiquinone oxidoreductase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone.
 
 
 0.996
OKL43554.1
NADH-quinone oxidoreductase chain 13; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.991
nuoN
NADH:ubiquinone oxidoreductase subunit N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family.
 
 
 0.990
ctaG
Cytochrome c oxidase assembly protein; Exerts its effect at some terminal stage of cytochrome c oxidase synthesis, probably by being involved in the insertion of the copper B into subunit I; Belongs to the COX11/CtaG family.
 
 
 0.990
OKL45522.1
Ubiquinol-cytochrome c reductase iron-sulfur subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis.
 
 0.989
Your Current Organism:
Nesiotobacter exalbescens
NCBI taxonomy Id: 197461
Other names: ATCC BAA-994, CIP 108449, DSM 16456, N. exalbescens, Nesiotobacter exalbescens Donachie et al. 2006, Nesiotobacter sp. WB1-6, alpha proteobacterium LA33B, strain LA33B
Server load: low (18%) [HD]