STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
nqrBNADH:ubiquinone reductase (Na(+)-transporting) subunit B; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol. (401 aa)    
Predicted Functional Partners:
nqrA
NADH:ubiquinone reductase (Na(+)-transporting) subunit A; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol.
 
 0.999
nqrC
Na(+)-translocating NADH-quinone reductase subunit C; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol.
 
 
 0.998
nqrD
NADH:ubiquinone reductase (Na(+)-transporting) subunit D; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol; Belongs to the NqrDE/RnfAE family.
 
 
 0.998
nqrE
NADH:ubiquinone reductase (Na(+)-transporting) subunit E; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol; Belongs to the NqrDE/RnfAE family.
 
 
 0.997
nqrF
NADH:ubiquinone reductase (Na(+)-transporting) subunit F; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. The first step is catalyzed by NqrF, which accepts electrons from NADH and reduces ubiquinone-1 to ubisemiquinone by a one-electron transfer pathway.
 
 
 0.994
ODC05193.1
Hypothetical protein; Flavin transferase that catalyzes the transfer of the FMN moiety of FAD and its covalent binding to the hydroxyl group of a threonine residue in a target flavoprotein. Belongs to the ApbE family.
 
   
 0.918
ODC02961.1
ApbE family protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
     0.647
rnfE
Electron transport complex subunit RsxE; Part of a membrane-bound complex that couples electron transfer with translocation of ions across the membrane.
  
   
 0.608
rnfA
Electron transport complex subunit RsxA; Part of a membrane-bound complex that couples electron transfer with translocation of ions across the membrane.
 
   
 0.602
Your Current Organism:
Terasakiispira papahanaumokuakeensis
NCBI taxonomy Id: 197479
Other names: ATCC BAA-995, DSM 16455, DSM 23961, Halomonadaceae bacterium PH27A, T. papahanaumokuakeensis, Terasakiispira papahanaumokuakeensis Zepeda et al. 2015, strain PH27A
Server load: low (14%) [HD]