node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
OQW80831.1 | OQW83390.1 | BVN31_12800 | BVN31_05865 | NADH-quinone oxidoreductase subunit F; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH-quinone oxidoreductase subunit G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | 0.999 |
OQW80831.1 | OQW83393.1 | BVN31_12800 | BVN31_05880 | NADH-quinone oxidoreductase subunit F; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH-quinone oxidoreductase subunit F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. | 0.992 |
OQW80831.1 | OQW83717.1 | BVN31_12800 | BVN31_05235 | NADH-quinone oxidoreductase subunit F; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the peptidase M16 family. | 0.999 |
OQW80831.1 | OQW83736.1 | BVN31_12800 | BVN31_05240 | NADH-quinone oxidoreductase subunit F; Derived by automated computational analysis using gene prediction method: Protein Homology. | Peptidase M16; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
OQW80831.1 | OQW84927.1 | BVN31_12800 | BVN31_02450 | NADH-quinone oxidoreductase subunit F; Derived by automated computational analysis using gene prediction method: Protein Homology. | Ubiquinol-cytochrome c reductase iron-sulfur subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | 0.999 |
OQW80831.1 | OQW84928.1 | BVN31_12800 | BVN31_02455 | NADH-quinone oxidoreductase subunit F; Derived by automated computational analysis using gene prediction method: Protein Homology. | Cytochrome b; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | 0.999 |
OQW80831.1 | OQW84929.1 | BVN31_12800 | BVN31_02460 | NADH-quinone oxidoreductase subunit F; Derived by automated computational analysis using gene prediction method: Protein Homology. | Cytochrome c1; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
OQW80831.1 | nuoC | BVN31_12800 | BVN31_05905 | NADH-quinone oxidoreductase subunit F; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH-quinone oxidoreductase subunit C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. | 0.999 |
OQW80831.1 | nuoD | BVN31_12800 | BVN31_05895 | NADH-quinone oxidoreductase subunit F; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. | 0.999 |
OQW80831.1 | nuoI | BVN31_12800 | BVN31_05855 | NADH-quinone oxidoreductase subunit F; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH-quinone oxidoreductase subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.999 |
OQW83390.1 | OQW80831.1 | BVN31_05865 | BVN31_12800 | NADH-quinone oxidoreductase subunit G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | NADH-quinone oxidoreductase subunit F; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
OQW83390.1 | OQW83393.1 | BVN31_05865 | BVN31_05880 | NADH-quinone oxidoreductase subunit G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | NADH-quinone oxidoreductase subunit F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. | 0.999 |
OQW83390.1 | OQW83717.1 | BVN31_05865 | BVN31_05235 | NADH-quinone oxidoreductase subunit G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the peptidase M16 family. | 0.969 |
OQW83390.1 | OQW83736.1 | BVN31_05865 | BVN31_05240 | NADH-quinone oxidoreductase subunit G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | Peptidase M16; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.969 |
OQW83390.1 | OQW84927.1 | BVN31_05865 | BVN31_02450 | NADH-quinone oxidoreductase subunit G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | Ubiquinol-cytochrome c reductase iron-sulfur subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | 0.998 |
OQW83390.1 | OQW84928.1 | BVN31_05865 | BVN31_02455 | NADH-quinone oxidoreductase subunit G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | Cytochrome b; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | 0.991 |
OQW83390.1 | OQW84929.1 | BVN31_05865 | BVN31_02460 | NADH-quinone oxidoreductase subunit G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | Cytochrome c1; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
OQW83390.1 | nuoC | BVN31_05865 | BVN31_05905 | NADH-quinone oxidoreductase subunit G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | NADH-quinone oxidoreductase subunit C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. | 0.999 |
OQW83390.1 | nuoD | BVN31_05865 | BVN31_05895 | NADH-quinone oxidoreductase subunit G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. | 0.999 |
OQW83390.1 | nuoI | BVN31_05865 | BVN31_05855 | NADH-quinone oxidoreductase subunit G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | NADH-quinone oxidoreductase subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.999 |