STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
SFO17221.1Enamine deaminase RidA, house cleaning of reactive enamine intermediates, YjgF/YER057c/UK114 family. (136 aa)    
Predicted Functional Partners:
SFO17242.1
DNA-binding transcriptional regulator, HxlR family.
 
     0.644
fusA
Elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily.
    
  0.617
fusA-2
Translation elongation factor 2 (EF-2/EF-G); Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. [...]
    
  0.617
SFQ16742.1
Translation elongation factor 2 (EF-2/EF-G).
    
  0.617
SFN93534.1
Threonine dehydratase.
  
 0.613
SFO47565.1
Anthranilate synthase, component I.
    
  0.605
rph
Ribonuclease PH; Phosphorolytic 3'-5' exoribonuclease that plays an important role in tRNA 3'-end maturation. Removes nucleotide residues following the 3'-CCA terminus of tRNAs; can also add nucleotides to the ends of RNA molecules by using nucleoside diphosphates as substrates, but this may not be physiologically important. Probably plays a role in initiation of 16S rRNA degradation (leading to ribosome degradation) during starvation.
  
   0.584
SFQ28105.1
Cytosine/adenosine deaminase.
 
    0.479
SFO17199.1
Protein of unknown function.
  
    0.473
SFP87187.1
Acetyl/propionyl-CoA carboxylase, alpha subunit.
  
 
  0.466
Your Current Organism:
Actinomadura madurae
NCBI taxonomy Id: 1993
Other names: A. madurae, ATCC 19425, CCM 136, CCUG 32944, CECT 3043, CIP 105487, DSM 43067, IAM 14277, IFM 0585, IFO 13909, IFO 14623, IMET 9585, JCM 7436, KCTC 9192, NBRC 14623, NCIMB 13469, NCTC 5654, NRRL B-3843, Nocardia madurae, Streptomyces madurae, Streptothrix madurae, VKM Ac-809
Server load: low (18%) [HD]