STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
rpsLSSU ribosomal protein S12P; Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit. (124 aa)    
Predicted Functional Partners:
rpsP
Ribosomal protein S16; Belongs to the bacterial ribosomal protein bS16 family.
 
 0.999
rpsB
SSU ribosomal protein S2P; Belongs to the universal ribosomal protein uS2 family.
 
 0.999
rpsO
SSU ribosomal protein S15P; Forms an intersubunit bridge (bridge B4) with the 23S rRNA of the 50S subunit in the ribosome.
 
 0.999
SFN15711.1
PELOTA RNA binding domain-containing protein.
  
 0.999
SFN24762.1
SSU ribosomal protein S1P.
   
 0.999
rplL
LSU ribosomal protein L12P; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family.
 
 
 0.999
rplK
LSU ribosomal protein L11P; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors.
 
 
 0.999
fusA
Elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily.
 0.999
rpmA
LSU ribosomal protein L27P; Belongs to the bacterial ribosomal protein bL27 family.
 
 
 0.999
rpsD
SSU ribosomal protein S4P; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit.
 
 0.999
Your Current Organism:
Actinomadura madurae
NCBI taxonomy Id: 1993
Other names: A. madurae, ATCC 19425, CCM 136, CCUG 32944, CECT 3043, CIP 105487, DSM 43067, IAM 14277, IFM 0585, IFO 13909, IFO 14623, IMET 9585, JCM 7436, KCTC 9192, NBRC 14623, NCIMB 13469, NCTC 5654, NRRL B-3843, Nocardia madurae, Streptomyces madurae, Streptothrix madurae, VKM Ac-809
Server load: low (20%) [HD]