STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KIQ12482.1Phospho-2-dehydro-3-deoxyheptonate aldolase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II DAHP synthase family. (452 aa)    
Predicted Functional Partners:
KIQ08248.1
Chorismate mutase; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.971
aroB
3-dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ).
 
  
 0.917
KIQ12416.1
1-acyl-sn-glycerol-3-phosphate acyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.689
KIQ12483.1
Glucokinase; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.541
aroC
Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system.
     
 0.515
aroA
3-phosphoshikimate 1-carboxyvinyltransferase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate.
     
 0.494
KIQ12479.1
Transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.481
KIQ08299.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.478
aroQ
3-dehydroquinate dehydratase; Catalyzes a trans-dehydration via an enolate intermediate. Belongs to the type-II 3-dehydroquinase family.
     
 0.472
KIQ12417.1
Long-chain fatty acid--CoA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.428
Your Current Organism:
Curtobacterium flaccumfaciens
NCBI taxonomy Id: 2035
Other names: Bacterium flaccumfaciens, Bacterium poinsettiae, C. flaccumfaciens, CIP 107085, Corynebacterium betae, Corynebacterium flaccumfaciens, Corynebacterium flaccumfaciens subsp. betae, Corynebacterium flaccumfaciens subsp. flaccumfaciens, Corynebacterium flaccumfaciens subsp. oortii, Corynebacterium flaccumfaciens subsp. poinsettiae, Corynebacterium oortii, Curtibacterium flaccumfaciens, ICMP 2584, JCM 9670, LMG 3645, LMG:3645, Phytomonas flaccumfaciens, Phytomonas poinsettiae, Pseudomonas flaccumfaciens
Server load: low (10%) [HD]