STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
atpAATP synthase F0F1 subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. (542 aa)    
Predicted Functional Partners:
atpB
ATP synthase F0F1 subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family.
 
 0.999
atpE
ATP F0F1 synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
  
 0.999
atpF
ATP synthase F0F1 subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family.
 
 0.999
atpH
ATP synthase F0F1 subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
 
 0.999
atpG
ATP synthase F0F1 subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex.
 0.999
atpD
ATP F0F1 synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits.
 
0.999
KIQ01404.1
ATP synthase F0F1 subunit epsilon; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.999
kgd
Alpha-ketoglutarate decarboxylase; Kgd; produces succinic semialdehyde; part of alternative pathway from alpha-ketoglutarate to succinate; essential for normal growth; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.976
rpoB
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
 
 
  
 0.941
fusA
Elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily.
   
 
 0.912
Your Current Organism:
Curtobacterium flaccumfaciens
NCBI taxonomy Id: 2035
Other names: Bacterium flaccumfaciens, Bacterium poinsettiae, C. flaccumfaciens, CIP 107085, Corynebacterium betae, Corynebacterium flaccumfaciens, Corynebacterium flaccumfaciens subsp. betae, Corynebacterium flaccumfaciens subsp. flaccumfaciens, Corynebacterium flaccumfaciens subsp. oortii, Corynebacterium flaccumfaciens subsp. poinsettiae, Corynebacterium oortii, Curtibacterium flaccumfaciens, ICMP 2584, JCM 9670, LMG 3645, LMG:3645, Phytomonas flaccumfaciens, Phytomonas poinsettiae, Pseudomonas flaccumfaciens
Server load: low (12%) [HD]