node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ALX03237.1 | ALX03877.1 | AERYTH_00240 | AERYTH_03755 | Hypothetical protein; PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides; Belongs to the cyclophilin-type PPIase family. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.760 |
ALX03237.1 | fusA | AERYTH_00240 | AERYTH_13705 | Hypothetical protein; PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides; Belongs to the cyclophilin-type PPIase family. | Elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily. | 0.704 |
ALX03237.1 | rplC | AERYTH_00240 | AERYTH_13660 | Hypothetical protein; PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides; Belongs to the cyclophilin-type PPIase family. | 50S ribosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit; Belongs to the universal ribosomal protein uL3 family. | 0.540 |
ALX03877.1 | ALX03237.1 | AERYTH_03755 | AERYTH_00240 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides; Belongs to the cyclophilin-type PPIase family. | 0.760 |
ALX03877.1 | ALX04467.1 | AERYTH_03755 | AERYTH_07065 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.767 |
ALX03877.1 | ALX05268.1 | AERYTH_03755 | AERYTH_11440 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.736 |
ALX03877.1 | fusA | AERYTH_03755 | AERYTH_13705 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily. | 0.798 |
ALX03877.1 | nnrD | AERYTH_03755 | AERYTH_13420 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Bifunctional enzyme that catalyzes the epimerization of the S- and R-forms of NAD(P)HX and the dehydration of the S-form of NAD(P)HX at the expense of ADP, which is converted to AMP. This allows the repair of both epimers of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration. Catalyzes the epimerization of the S- and R-forms of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration. This is a prerequisite for the S-specific NAD(P)H-hydrate dehydratase to allow the repair of both epi [...] | 0.785 |
ALX03877.1 | pnp | AERYTH_03755 | AERYTH_07665 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Polynucleotide phosphorylase; Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction. | 0.817 |
ALX03877.1 | rplC | AERYTH_03755 | AERYTH_13660 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 50S ribosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit; Belongs to the universal ribosomal protein uL3 family. | 0.719 |
ALX03877.1 | rplD | AERYTH_03755 | AERYTH_13655 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 50S ribosomal protein L4; Forms part of the polypeptide exit tunnel. | 0.707 |
ALX03877.1 | rpsD | AERYTH_03755 | AERYTH_13505 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. | 0.736 |
ALX03877.1 | rpsE | AERYTH_03755 | AERYTH_13575 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 30S ribosomal protein S5; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body. Belongs to the universal ribosomal protein uS5 family. | 0.691 |
ALX04467.1 | ALX03877.1 | AERYTH_07065 | AERYTH_03755 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.767 |
ALX05268.1 | ALX03877.1 | AERYTH_11440 | AERYTH_03755 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.736 |
ALX05268.1 | fusA | AERYTH_11440 | AERYTH_13705 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily. | 0.669 |
ALX05268.1 | rplC | AERYTH_11440 | AERYTH_13660 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 50S ribosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit; Belongs to the universal ribosomal protein uL3 family. | 0.540 |
ALX05268.1 | rpsD | AERYTH_11440 | AERYTH_13505 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. | 0.489 |
fusA | ALX03237.1 | AERYTH_13705 | AERYTH_00240 | Elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily. | Hypothetical protein; PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides; Belongs to the cyclophilin-type PPIase family. | 0.704 |
fusA | ALX03877.1 | AERYTH_13705 | AERYTH_03755 | Elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.798 |