STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
coxPCytochrome-c oxidase; Function of homologous gene experimentally demonstrated in an other organism; enzyme. (230 aa)    
Predicted Functional Partners:
HEAR1115
Putative Cytochrome c oxidase, subunit II (Cytochrome bb3 subunit 2) CoxM; Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative enzyme.
 
 0.999
coxN
Cytochrome c oxidase subunit 1; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B.
 0.999
ctaC
Cytochrome c oxidase, subunit II (Cytochrome aa3 subunit 2); Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B).
 
 0.995
HEAR1119
Conserved hypothetical protein; Homologs of previously reported genes of unknown function.
 
  
  0.994
ctaD
Cytochrome c oxidase subunit 1 (Cytochrome c oxidase polypeptide I) (Cytochrome aa3 subunit 1); Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B.
 0.990
HEAR1117
Putative cytochrome c oxidase subunit III CoxO; Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative enzyme.
 
  
 
0.979
cyoB
Cytochrome o ubiquinol oxidase subunit I; Function of homologous gene experimentally demonstrated in an other organism; carrier; Belongs to the heme-copper respiratory oxidase family.
 0.975
cyoA
Ubiquinol oxidase subunit 2; Function of homologous gene experimentally demonstrated in an other organism; carrier.
  
 0.961
petA
Ubiquinol-cytochrome c reductase iron-sulfur subunit (Rieske iron-sulfur protein) (RISP); Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis.
  
 0.939
petB
Cytochrome b; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis.
 
 
 0.937
Your Current Organism:
Herminiimonas arsenicoxydans
NCBI taxonomy Id: 204773
Other names: CCM 7303, DSM 17148, H. arsenicoxydans, Herminiimonas arsenicoxydans Muller et al. 2006, LMG 22961, LMG:22961, strain ULPAs1
Server load: low (26%) [HD]