STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
OSY41034.1Hypothetical protein. (395 aa)    
Predicted Functional Partners:
htpG
Chaperone protein HtpG; Molecular chaperone. Has ATPase activity.
  
 0.970
grpE
Heat shock protein GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP- [...]
  
 0.961
OSY43602.1
Phosphotransferase enzyme family protein.
  
 0.915
clpC1_1
ATP-dependent Clp protease ATP-binding subunit ClpC1.
  
 
 0.911
clpC1_2
ATP-dependent Clp protease ATP-binding subunit ClpC1; Belongs to the ClpA/ClpB family.
  
 
 0.911
clpB
Chaperone protein ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family.
  
 
 0.911
dnaJ_1
Chaperone protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, D [...]
  
 0.865
dnaJ_2
Chaperone protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, D [...]
  
 0.865
dnaJ_3
Chaperone protein DnaJ.
  
 0.865
nifU
NifU-like protein.
  
 
 0.836
Your Current Organism:
Pseudonocardia autotrophica
NCBI taxonomy Id: 2074
Other names: ATCC 19727, Amycolata autotrophica, CIP 107114, DSM 535, IFO 12743, IMSNU 20050, JCM 4348, NBRC 12743, NRRL B-11275, Nocardia autotrophica, P. autotrophica, Streptomyces autotrophicus, VKM Ac-941
Server load: low (26%) [HD]