STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
APZ04014.1GTPase; Derived by automated computational analysis using gene prediction method: Protein Homology. (318 aa)    
Predicted Functional Partners:
APZ04013.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.982
APZ05672.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.883
rpsN
30S ribosomal protein S14; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site; Belongs to the universal ribosomal protein uS14 family.
 
 
 0.809
dksA
Hypothetical protein; Transcription factor that acts by binding directly to the RNA polymerase (RNAP). Required for negative regulation of rRNA expression and positive regulation of several amino acid biosynthesis promoters. Also required for regulation of fis expression.
  
  
 0.743
rpmB
50S ribosomal protein L28; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL28 family.
  
  
 0.728
map
Methionine aminopeptidase; Removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). Requires deformylation of the N(alpha)-formylated initiator methionine before it can be hydrolyzed; Belongs to the peptidase M24A family. Methionine aminopeptidase type 1 subfamily.
    
 
 0.722
APZ04482.1
Metal ABC transporter substrate-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial solute-binding protein 9 family.
  
  
 0.705
znuA
Murein DD-endopeptidase MepM; Frameshifted; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial solute-binding protein 9 family.
  
  
 0.693
APZ04012.1
Carbon starvation protein A; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
    0.690
rpmG
50S ribosomal protein L33; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL33 family.
 
  
 0.658
Your Current Organism:
Kosakonia cowanii
NCBI taxonomy Id: 208223
Other names: CCUG 45998 A, CCUG 45998 B, CIP 107300, DSM 18146, Enterobacter cowanii, Enterobacter cowanii Inoue et al. 2001, JCM 10956, K. cowanii, Kosakonia cowanii (Inoue et al. 2001) Brady et al. 2013, LMG 23569, LMG:23569, NIH group 42, strain 888-76, strain KSK 246, strain UM-79
Server load: low (18%) [HD]