STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
OLR18946.1Heat-shock protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the HSP15 family. (133 aa)    
Predicted Functional Partners:
hslO
Hsp33 family molecular chaperone; Redox regulated molecular chaperone. Protects both thermally unfolding and oxidatively damaged proteins from irreversible aggregation. Plays an important role in the bacterial defense system toward oxidative stress.
  
  
 0.974
OLR18947.1
GMP/IMP nucleotidase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.943
rplS
50S ribosomal protein L19; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site.
  
   0.916
rplY
50S ribosomal protein L25; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family.
 
 
 
 0.895
rplQ
50S ribosomal protein L17; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.891
rpmB
50S ribosomal protein L28; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL28 family.
 
   0.890
rplI
50S ribosomal protein L9; Binds to the 23S rRNA.
  
   0.861
rplT
50S ribosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit.
   
   0.846
rpmF
50S ribosomal protein L32; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL32 family.
    
   0.844
rpmI
50S ribosomal protein L35; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL35 family.
    
   0.844
Your Current Organism:
Enterobacter kobei
NCBI taxonomy Id: 208224
Other names: ATCC BAA-260, CCUG 49023, CIP 105566, DSM 13645, E. kobei, Enterobacter sp. 35730, Enterobacter sp. 42202, Enterobacter sp. 44593, Enterobacter sp. GN02186, Enterobacter sp. GN02204, Enterobacter sp. GN02225, Enterobacter sp. GN02266, Enterobacter sp. GN02275, Enterobacter sp. GN02366, Enterobacter sp. GN02454, Enterobacter sp. GN02825, Enterobacter sp. GN03191, JCM 8580, NIH group 21
Server load: low (12%) [HD]